首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ? aspect ratio ? 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.  相似文献   

2.
This study investigates effects of the zinc oxide (ZnO) addition and the sintering temperature on the microstructure and the electrical properties (such as dielectric constant and loss tangent) of the lead-free piezoelectric ceramic of bismuth sodium titanate (Na0.5Bi0.5TiO3), NBT, which was prepared using the mixed oxide method. Three kinds of starting powders (such as Bi2O3, Na2CO3 and TiO2) were mixed and calcined. This calcined NBT powder and a certain weight percentage of ZnO were mixed and compressed into a green compact of NBT–ZnO. Then, this green compact of NBT–ZnO was sintered to be a disk doped with ZnO, and its characteristics were measured. In this study, the calcining temperature was 800 °C, the sintering temperatures ranged from 1000 to 1150 °C, and the weight percentages of ZnO doping included 0.0, 0.5, 1.0, and 2.0 wt%. At a fixed wt% ZnO, the grain size increases with increase in the sintering temperature. The largest relative density of the NBT disk obtained in this study is 98.3% at the calcining temperature of 800 °C, the sintering temperature of 1050 °C, and 0.5 wt% ZnO addition. Its corresponding dielectric constant and loss tangent are 216.55 and 0.133, respectively.  相似文献   

3.
Cu doped ZnO nanoparticle sheets were synthesized via a proposed solution route with mixed Zn(NO3)2 and Cu(NO3)2 precursors at a low temperature of 95 °C. Scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectrometry results demonstrate that the nanostructues synthesized by solutions with higher Cu(NO3)2 concentration are nanoparticle sheets comprised of uniform Cu doped ZnO nanoparticles with diameters around 20 nm. Room-temperature photoluminescence spectra of the nanoparticle sheets show tunable near band emissions centered at 390–405 nm and strong yellow emissions at 585–600 nm. Absorbance spectra show gradual redshift in the UV range with the increase of Cu concentrations in the ZnO nanomaterials. The study provides a simple and efficient route to prepare Cu doped ZnO nanomaterials at low temperature. The as-synthesized products with both violet and yellow emissions are promising for white light-emitting diode applications.  相似文献   

4.
Zinc oxide (ZnO) was synthesized using a microwave assisted hydrothermal (MAH) process based on chloride/urea/water solution and under 800 W irradiation for 5 min. In the bath, Zn2+ ions reacted with the complex carbonate and hydroxide ions to form zinc carbonate hydroxide hydrate (Zn4CO3(OH)6·H2O), and the conversion from Zn4CO3(OH)6·H2O to ZnO was synchronously achieved by a MAH process. The as-prepared ZnO has a sponge-like morphology. However, the initial sponge-like morphology of ZnO could change to a net-like structure after thermal treatment, and compact nano-scale ZnO particles were finally obtained when the period of thermal treatment increased to 30 min. Pure ZnO nanoparticles was obtained from calcination of loose sponge-like ZnO particles at 500 °C. The analysis of optical properties of these ZnO nanoparticles showed that the intensity of 393 nm emission increased with the calcination temperature because the defects were reduced and the crystallinity was improved.  相似文献   

5.
Quantum-sized ZnO was prepared using sol–gel method with zinc acetate dehydrate (Zn(CH3COO)2·2H2O) and lithium hydroxide monohydrate (LiOH·H2O) as raw material. The ZnO particles annealed at different temperature were characterized by means of X-ray diffraction (XRD), Infrared absorption spectroscopy (IR) and UV–vis spectroscopy. The degradation rate of reactive brilliant blue X-BR in aqueous solution was used to evaluate the photocatalytic performance of the quantum-sized ZnO. The experimental results indicated that the photocatalytic property of the ZnO was excellent. The photocatalytic efficiency of quantum-sized ZnO was significantly influenced by the calcining heat. When calcined at 300 °C, its size is 6.78 nm and the photocatalytic performance is the best. The degradation rate of reactive brilliant blue X-BR could exceed 90% in 15 min at 35 °C, when the concentration of the quantum-sized ZnO was 0.35 mg/L.  相似文献   

6.
An ethanol gas sensor was fabricated based on Ti doped ZnO nanotetrapods which were prepared by chemical vapor deposition (CVD) of ZnO nanotetrapods followed by co-annealing with TiO2 powder. X-ray diffraction (XRD), Raman spectra and scanning electron microscopy (SEM) were used to characterize the morphology and structure of the as-obtained sample and the ethanol-sensing characteristics of the device were investigated. ZnO:Ti sensors show higher gas response than ZnO counterparts towards 100 ppm ethanol gas at a temperature of 260 °C. The recovery times of the devices are 3.1 min for ZnO:Ti and 10.1 min for ZnO, respectively. The enhancement of sensing properties of ZnO:Ti tetrapods indicates the potential application for fabricating low power and highly sensitive gas sensors.  相似文献   

7.
《Materials Letters》2007,61(11-12):2495-2498
Nitrogen-doped, p-type ZnO thin films have been grown successfully on sapphire (0001) substrates by atomic layer epitaxy (ALE) using Zn(C2H5)2 [Diethylzinc, DEZn], H2O and NH3 as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE was 210 Ω cm with a hole concentration of 3.41 × 1016 cm 3. Low temperature-photoluminescence analysis results support that the nitrogen ZnO after annealing is a p-type semiconductor. Also a model for change from n-type ZnO to p-type ZnO by annealing is proposed.  相似文献   

8.
The effect of substrate temperature (Ts) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The Ts was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in Ts. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal Ts. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing Ts until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing Ts. The optical band gap calculated from the absorption edge showed that the films deposited with Ts of 300 °C and 350 °C possess higher values than those deposited at higher Ts.  相似文献   

9.
Natively textured surface aluminum doped zinc oxide (ZnO:Al) thin films were directly deposited via pulsed direct current (DC) reactive magnetron sputtering on glass substrates. During the reactive sputtering process, the oxygen gas flow rate was varied from 8.5 sccm to 11.0 sccm. The influences of oxygen flow rate on the structural, electrical and optical properties of naturally textured ZnO:Al TCO thin films with milky surface were investigated in detail. Gradual oxygen growth (GOG) technique was developed in the reactive sputtering process for textured ZnO:Al thin films. The light-scattering ability and optical transmittance of the natively textured ZnO:Al TCO thin films can be improved through gradual oxygen growth method while maintaining a low sheet resistance. Typical natively textured ZnO:Al TCO thin film with crater-like surface exhibits low sheet resistance (Rs  4 Ω), high transmittance (Ta > 85%) in visible optical region and high haze value (12.1%).  相似文献   

10.
In order to clarify the formation condition of zinc rusts such as layered zinc hydroxynitrate (Zn5(OH)8(NO3)2·2H2O: ZHN), ZnO particles were aged with aqueous Zn(NO3)2·6H2O solution at 6–140 °C for 48 h. Further, adsorption of H2O and CO2 on ZHN was examined for simulating study of atmospheric corrosion of galvanized steel. The ZHN was formed at 6 °C and the ZnO completely disappeared, meaning the hydrolysis of ZnO particles in aqueous Zn(NO3)2·6H2O solution to recrystallize as ZHN. Increasing the aging temperature improved the crystallinity of layered structure of ZHN, showing a maximum at 85 °C. The formed ZHN was hexagonal plate-like particles. The particle size was dependent of the crystallinity of layered structure of ZHN. The specific surface area of ZHN was decreased on elevating the aging temperature, showing a minimum at 85 °C. The adsorption of H2O and CO2 was enhanced on increasing the crystallinity of layered structure of ZHN, meaning that these molecules are adsorbed not only on particle surface but also in interlayer of ZHN. These facts infer that the preferred orientation of plate-like ZHN particles leads to the formation of compact rust layer on galvanized steel and to the enhancement of corrosion resistance.  相似文献   

11.
Cr doped ZnO (Zn1 ? xCrxO) thin films with different Cr concentrations (0.4, 1.5, and 8.9 at.%) were deposited on Si substrates using RF magnetron sputtering. Film crystal structure was characterized using X-ray diffraction, and vibrating sample magnetometer measurements were used to investigate their magnetic properties. Unstable ZnO structure is present at low Cr concentrations, while secondary phases appear at higher Cr concentrations. 8.9 at.% Zn1 ? xCrxO film exhibits room temperature ferromagnetism and high 325 K Curie temperature, even after 300 °C annealing for 1 h. This result is promising and demonstrates Cr doped ZnO film's potential use in practical applications.  相似文献   

12.
ZnO nanoparticles were synthesized solvothermally in various diols (ethylene glycol, di(ethylene glycol), tetra(ethylene glycol), 1,2-propanediol, 1,4-butanediol), using basic zinc carbonate (2ZnCO3·3Zn(OH)2) as a precursor for the first time. Since ZnCO3 was sparingly soluble in diols the transformation reaction proceeded at a low reaction rate. Ethylene glycol was found as the most suitable medium among five diols studied yielding the smallest ZnO particles (~ 55 nm) and short reaction time, tr (2 h). Diols with shorter chain length produced smaller ZnO particles. p-Toluene sulfonic acid (p-TSA) acted as a catalyst and reduced tr from 8 h to 2 h in concentration of 0.02 M. Optimum reaction conditions for the synthesis in ethylene glycol were 185 °C and 2 h. At higher p-TSA concentrations (0.04–0.08 M) the size of ZnO particles was reduced from 500–800 nm to 50–100 nm and crystallite size to 25–30 nm. Benzene sulfonic acid (BSA) and inorganic bases (LiOH, NaOH, and KOH) also showed catalytic activities. Raman and photoluminescence spectroscopies revealed high concentration of defects on ZnO surface causing the emission of visible light and giving this type of ZnO higher potential in various (opto)-electronic application in comparison to Zn(II) acetate based ZnO.  相似文献   

13.
Here in, the synthesis of the terbium doped zinc oxide (ZnO:Tb3+) nanorods via room temperature chemical co-precipitation was explored and their structural, photoluminescence (PL) and thermoluminescence (TL) studies were investigated in detail. The present samples were found to have pure hexagonal wurtzite crystal structure. The as obtained samples were broadly composed of nanoflakes while the highly crystalline nanorods have been formed due to low temperature annealing of the as synthesized samples. The diameters of the nanoflakes are found to be in the range 50–60 nm whereas the nanorods have diameter 60–90 nm and length 700–900 nm. FTIR study shows ZnO stretching band at 475 cm?1 showing improved crystal quality with annealing. The bands at 1545 and 1431 cm?1 are attributed to asymmetric and symmetric CO stretching vibration modes. The diffuse reflectance spectra show band edge emission near 390 nm and a blue shift of the absorption edge with higher concentration of Tb doping. The PL spectra of the Tb3+-doped sample exhibited bright bluish green and green emissions at 490 nm (5D4  7F6) and 544 nm (5D4  7F5) respectively which is much more intense then the blue (450 nm), bluish green (472 nm) and broad green emission (532 nm) for the undoped sample. An efficient energy transfer process from ZnO host to Tb3+ is observed in PL emission and excitation spectra of Tb3+-doped ZnO ions. The doped sample exhibits a strong TL glow peak at 255 °C compared to the prominent glow peak at 190 °C for the undoped sample. The higher temperature peaks are found to obey first order kinetics whereas the lower temperature peaks obey 2nd order kinetics. The glow peak at 255 °C for the Tb3+ doped sample has an activation energy 0.98 eV and frequency factor 2.77 × 108 s?1.  相似文献   

14.
In this research ZnO and Zn1?x AlxO (x = 1, 3, 5, 7% mol) nanoparticles were synthesized by sol-gel method. The effect of Al concentration on the structure, morphology, absorption spectra and photocatalytic properties investigated by using X-ray, TEM, EDS and UV–Vis spectrophotometer approaches. Hexagonal, spherical and rod-like structure was achieved as the dominant structure for undoped nanoparticles, low and high concentrations of doped Al, respectively. Photocatalytic activity of nanoparticles was measured by degradation of methyl orange as a pollutant under radiation of ultraviolet (UV). The experimental test results indicate that the best photocatalytic performance is at of 5% of Al. Furthermore, the doped ZnO nanoparticles have more activity in visible area compared with undoped nanoparticles. The absorption amount in this area increases by raising the Al concentrations. Furthermore, the band gap of the particles decreases from 3.22 eV to 2.93 eV by increasing Al percentage.  相似文献   

15.
We report on the structural, micro-structural and magnetic properties of Zn1?xCoxO (0  x  0.1) system. Electron probe micro-structural analysis on 5% Co doped ZnO indicates the presence of segregated cobalt oxide which is also confirmed from the Co 2p core level X-ray photoelectron spectrum. The presence of oxygen defects in lower percentage of Co doped ZnO (≤5%) enhances the carrier mediated exchange interaction and thereby enhancing the room-temperature ferromagnetic behaviour. Higher doping percentage of cobalt (>5%) creates weak link between the grains and suppresses the carrier mediated exchange interaction. This is the reason why room temperature ferromagnetism is not observed in 7% and 10% Co doped ZnO.  相似文献   

16.
《Materials Letters》2007,61(11-12):2460-2463
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films with highly (002)-preferred orientation were deposited on glass substrates by DC reactive magnetron sputtering method in Ar + O2 ambience with different Ar/O2 ratios. The structural, electrical, and optical properties were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The resistivity and optical transmittance of the ZnO:Ga thin films are of the order of 10 4 Ω cm and over 85%, respectively. The lowest electrical resistivity of the film is found to be about 3.58 × 10 4 Ω cm. The influences of Ar/O2 gas ratios on the resistivity, Hall mobility, and carrier concentration were analyzed.  相似文献   

17.
The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 −1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.  相似文献   

18.
In this paper, ZnO/epoxy composites with homogeneous dispersion were prepared via two simple steps: firstly, in situ preparation of zinc hydroxide (Zn(OH)2)/epoxy from the reaction of aqueous zinc acetate (Zn(Ac)2·2H2O) and sodium hydroxide (NaOH) at 30 °C in the presence of high viscosity epoxy resin; secondly, thermal treatment of the as-prepared Zn(OH)2/epoxy hybrid into ZnO/epoxy composites. Meanwhile, the structure, composition and mechanical properties of the resultant products were successfully investigated. From the result of characterization we found that the composite had the optimal mechanical property at ZnO fraction of 5 wt.%. Compared to pure epoxy resin, the improvement of ultimate tensile stress, elongation at break, tensile modulus and flexural strength achieved about 40.84%, 24.35%, 27.27% and 51.43%, respectively. The crack arresting mechanisms included particle matrix debonding, plastic void growth, in the composites with a stronger interface, significant plastic deformation of the matrix around the well bonded particles. At the same time, the possible reactive mechanism of the preparation of ZnO/epoxy composite was discussed in this paper.  相似文献   

19.
Ga doped ZnO (GZO) and GaP codoped ZnO (GPZO) thin films of different concentrations (1–4 mol%) have been grown on sapphire substrates by RF sputtering for the fabrication of ZnO homojunction. The grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall measurement, energy dispersive spectroscopy (EDS), time-of-flight secondary ion mass spectrometer (ToF-SIMS), UV–Vis–NIR spectroscopy and atomic force microscopy (AFM). Unlike in conventional codoping, here we directly doped (codoped) GaP into ZnO to realize p-ZnO. The Hall measurements indicate that 2 and 4% GPZO films exhibit p-conductivity due to the sufficient amount of phosphorous incorporation while all the monodoped GZO films showed n-conductivity as expected. Among the p-ZnO films, 2% GPZO film shows low resistivity (2.17 Ωcm) and high hole concentration (1.8 × 1018 cm?3) by optimum incorporation of phosphorous due to best codoping. Similarly, among the n-type films, 2% GZO shows low resistivity (1.32 Ωcm) and high electron concentration (2.02 × 1019 cm?3) by optimum amount of Ga incorporation. The blue shift and red shift in NBE emission observed from PL acknowledged the formation of n- and p-conduction in monodoped and codoped films, respectively. The neutral acceptor bound exciton recombination (A0X) observed by low temperature PL for 2% GPZO confirms the p-conductivity. Further, the high concentration of P atoms than Ga observed from ToF-SIMS (2% GPZO) also supports the p-conductivity of the films. The fabricated p–n junction with best codoped p-(ZnO)0.98(GaP)0.02 and best monodoped n-Zn0.98Ga0.02O films showed typical rectification behavior of a diode. The diode parameters have also been estimated for the fabricated homojunction.  相似文献   

20.
Ho and Y doped ZnO nanoparticles were synthesized using a wet chemical route followed by structural, electrical and magnetic property characterization of the same. We present a comparison of the properties of Ho and Y (having same ionic radii) doped ZnO nanoparticles. X-ray diffraction studies of the diffraction data exhibit a monophasic wurtzite crystal structure similar to that of the parent compound, ZnO. Microstructural investigations of these samples by scanning electron microscopy show the presence of nanostructures. The optical measurements show an increase in the band gap of doped samples as compared to the undoped sample. DC magnetization measurements of Ho doped ZnO point towards the presence of hysteresis loop at 5 K with an Hc of about 110 Oe for a nominal 1 mol% Ho doped sample. The resistivity of Ho doped sample is found to be higher as compared to the undoped and Y doped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号