共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
基于描述热量传递能力的物理量——火积,定义了评价换热器传热性能的火积耗散原理.同时,推出了换热器火积耗散的公式,并且通过代人数据计算,得出了火电厂各级加热器的火积耗散,并进行分析,对优化换热器的性能有一定的指导作用. 相似文献
5.
6.
螺旋折流板换热器是一种新型高效换热器,具有壳程流动阻力小,换热效率高,抑振和防垢性能好等优点,已经引起了越来越多研究者的关注.介绍了非连续螺旋折流板换热器和连续螺旋折流板换热器的制造技术,可以更好地促进螺旋折流板换热器的研究. 相似文献
7.
为了提高折流板换热器的换热性能,改变了折流板换热器的折弯夹角和折流板间距,利用ANSYS Fluent对换热器壳程流体流动与换热过程进行模拟,分析了不同折流板折弯夹角α (110°,135°,170°和180°)、折流板间距(250,300和350 mm)和雷诺数(10 000,20 000和50 000)对换热器壳程压力、速度和温度的影响。结果表明:增大雷诺数对改善流动死区有很大的作用,雷诺数为50 000时的流动死区相对于雷诺数为10 000时面积减小较大;随着夹角α的减小,折流板背流侧的流动死区面积逐渐减小、换热器的表面传热系数和进出口压降力越大,夹角α为110°时出口温度最小、进出口压降最大,夹角α为135°时PEC最大且换热器综合性能最优;折流板间距增大,压力变化梯度减小,压差变化幅度减小,壳程出口温度变化不成正比关系,间距为300 mm时出口温度最低。 相似文献
8.
9.
10.
螺旋折流板换热器是以很小的压降实现强化传热的新型换热设备,但已有的1/4椭圆螺旋折流板方案不适合用于占管壳式换热器绝大多数的正三角形排列布管方案.文中介绍一种新型螺旋折流板换热器,由每层3块三分椭圆折流板首尾相接而形成壳侧螺旋通道,每块折流板的边都位于管束的自然间隔中.由于每块折流板的基准边与椭圆之长轴重合或平行,并与正三角形排列布管的各管孔的一条中心连线平行;另一条边也与另一方向的管孔中心连线平行,因而其管孔的定位划线和制造容易实现. 相似文献
11.
In the present work, formulas for calculating the rates of the local thermodynamic entransy dissipation in convective heat transfer in general, and the internal and external flows in particular, are established. Practically, these results may facilitate the application of entransy dissipation theory in thermal engineering. Theoretically they shed light on solving the contradiction of the minimum entropy production principle with balance equations in continuum mechanics. 相似文献
12.
A crossflow heat exchanger (CFHEx) is designed and fabricated in a workshop. For designing this heat exchanger (HEx), the number of passes, frontal areas, HEx volumes, heat transfer areas, free-flow areas, ratios of minimum free-flow area to frontal area, densities, mass flow rates of flowing fluids, maximum/minimum heat capacities, heat capacity ratio, outlet temperatures of hot/cold fluids, average temperatures, mass velocities, Reynolds numbers, and convective heat transfer coefficients are evaluated by considering Colburn/friction factors. After fabrication of the HEx, effectiveness, exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, entransy dissipation number, and entransy effectiveness for hot/cold fluids sides are found at different flow rates and inlet temperatures of fluids. By experimental results, optimum operating conditions are found, which gives maximum effectiveness and entransy effectiveness but minimum rates of exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, and entransy dissipation number for the fabricated CFHEx. This study is concluded as follows: minimum exergy destruction and entransy dissipation rates (ie, 3.061 kJ/s·K and 1125.44 kJ·K/s, respectively) are found during experiment 2. Maximum entransy effectiveness of hot/cold fluids (ie, 0.689/0.21) is achieved in experiment 1. Moderate values of entransy dissipation number (ie, 4.689), entransy dissipation-based thermal resistance (ie, 0.04 s·K/J), exergy destruction (ie, 3.845 kJ/s·K), and entransy dissipation (ie, 1374.04 kJ·K/s) rates are found during experiment 1. Maximum effectiveness (ie, 0.4) for the fabricated HEx is also obtained through experiment 1. After comparative analyses, it is found that experiment 1 provides optimum results, which shows the best performance of the fabricated HEx. 相似文献
13.
为了提高管壳式换热器的能源利用率,换热器强化传热的研究得到广泛关注。本文从强化传热原理、结构改进和设计优化等三方面对换热器折流部件的优化改进研究进行了分析和总结。其中,强化传热原理主要包括不同折流板通过改变流场的特性影响换热器性能;结构改进包括分段挡板、折流孔板和螺旋挡板的优化进展以及与单弓挡板的对比研究;设计优化包括利用各种新型算法对换热器结构参数的优化和成本的控制。针对管壳式换热器折流部件的强化传热问题,提出了非连续螺旋挡板的研究和结合多目标优化设计的结构改进是未来的重点研究方向。 相似文献
14.
Improving heat transfer performance is very beneficial to energy conservation because heat transfer processes widely existed in energy utilization systems. In this contribution, in order to effectively optimize convective heat transfer, such two principles as the field synergy principle and the entransy dissipation extremum principle are investigated to reveal the physical nature of the entransy dissipation and its intrinsic relationship with the field synergy degree. We first established the variational relations of the entransy dissipation and the field synergy degree with the heat transfer performance, and then derived the optimization equation of the field synergy principle and made comparison with that of the entransy dissipation extremum principle. Finally the theoretical analysis is then validated by the optimization results in both a fin-and-flat tube heat exchanger and a foursquare cavity. The results show that, for prescribed temperature boundary conditions, the above two optimization principles both aim at maximizing the total heat flow rate and their optimization equations can effectively obtain the best flow pattern. However, for given heat flux boundary conditions, only the optimization equation based on the entransy dissipation extremum principle intends to minimize the heat transfer temperature difference and could get the optimal velocity and temperature fields. 相似文献
15.
In the present work, the shell and tube heat exchanger (STHX) is designed based on The Tubular Exchanger Manufacturers Association standards with hot fluid (water) flowing on the shell side and cold fluid on the tube side. A comparison is made between the Nusselt number and friction factor obtained from numerical and experimental results of segmental baffles (SBs) and helical baffles (HB) with different baffle inclinations. The results show that SB provided a higher Colburn factor (js) when compared with HBs STHXs (20°, 30°, 40°, and 50°), but shell side pressure drop is lower for 40° HBs STHXs for the same shell side fluid flow rates. 相似文献
16.
Waste heat recovery (WHR) is crucial to the efficiency improvement of natural gas‐fired boiler systems. Two‐stage WHR systems based on the natural gas‐fired boiler were analyzed from the viewpoints of thermal efficiency and heat transfer irreversibility. An overall entransy dissipation‐based thermal resistance was derived to evaluate the irreversibility of WHR, including the entransy dissipations during condensation and in absorption heat pump (AHP). Compared with the basic WHR system, the two‐stage WHR systems have higher boiler efficiency and less irreversibility. The air‐humidified system recycles both the heat and vapor in flue gas, while the unutilized latent heat in the recovered vapor causes the boiler to be less efficient than the AHP system. Investigation on heat exchanger effectiveness of two‐stage WHR systems illustrated: in the two‐stage WHR system with air humidification, the increasing effectiveness of both heat exchangers could effectively increase boiler efficiency and reduce heat transfer irreversibility. In the two‐stage WHR system with AHP, boiler efficiency has a local optimum when the dew point occurs near the outlet of the first heat exchanger; increasing the second heat exchanger effectiveness is more efficient in improving boiler efficiency. The present work may provide available references and guidance for the design and optimization of the two‐stage WHR systems. 相似文献
17.
18.
19.
建立了新型板式省煤器的传热模型,计算了新型板式省煤器的火积耗散热阻以及空气侧压降,分析了新型板式省煤器结构参数及空气流速变化时,火积耗散热阻及空气侧压降的变化情况。研究结果表明:增大长轴可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,并且空气侧压降变化幅度不大;增大短轴可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大;减小板束间距可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大,尤其是在板束间距小于20 mm时,继续减小板束间距会造成空气侧压降急剧增大;增大空气进口流速可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大,对换热器的磨损也会增加。 相似文献