首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
采用近红外光谱技术建立小麦粉灰分含量的快速检测方法。使用两种不同的近红外光谱仪器采集小麦粉的近红外光谱数据,以常规分析法的测定值作为建模数据,采用偏最小二乘(PLS)回归分析法建立小麦粉灰分的定量分析模型,比较两种不同的近红外光谱仪器扫描的小麦粉近红外光谱图对模型的影响。结果表明,MicroNIR-1700近红外光谱仪扫描的谱图所建校正集模型的相关系数R~2为90.69,均方根误差(RMSECV)为0.031 2,预测集模型的均方根误差(RMSEP)为0.021 7;VERTEX70傅里叶变换近红外光谱仪扫描的谱图所建校正集模型的相关系数R~2为89.40,均方根误差(RMSECV)为0.035 0,预测集模型的均方根误差(RMSEP)为0.036 6。两种仪器都能用于小麦粉光谱采集,并进行灰分含量快速检测,MicroNIR-1700在小麦粉灰分检测方面有更好的应用。  相似文献   

2.
窦颖  孙晓荣  刘翠玲  肖爽 《食品科学》2016,37(12):208-211
模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126 份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074 个波数优选出70 个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。  相似文献   

3.
为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模型,以决定系数R2、校正均方根误差(root mean square error of calibration,RMSEC)、预测均方根误差(root mean square error of prediction,RMSEP)为指标,对比在不同光谱预处理条件下建立的回归模型与光谱预处理结合模拟退火算法优化处理条件下的回归模型。结果表明光谱预处理结合SAA-PLS模型能够有效提高模型的稳定性和预测能力,将R2从0.763?7提高到0.949?1、RMSEC从1.371?2降低到0.589?8、RMSEP从1.450?2降低到0.534?1。结果说明,光谱预处理结合模拟退火算法对光谱进行优化处理是可行的,模型预测能力和稳定性均优于未处理模型和仅进行光谱预处理的模型。  相似文献   

4.
目的 基于高光谱技术实现对小麦粉灰分含量的准确检测。方法 利用高光谱成像技术采集小麦粉的光谱数据,建立基于偏最小二乘法(partial least squares regression,PLSR)和深度极限学习机(deep extreme learning machines,DELM)的小麦粉灰分含量预测模型;通过分析3种预处理算法和4种波长选择算法,分别选出最佳的预处理与波长选择方法,最后构建基于特征波段光谱信息的预测模型,并对结果进行比较。结果 标准正态变量校正(standard normal variable,SNV)为最佳预处理方法;连续投影算法(successive projections algorithm,SPA)相较于随机森林(random forest,RF)、无信息变量消除(uninformative variable elimination,UVE)和遗传算法(genetic algorithm,GA)选择特征波长的模型更优;DELM模型更适用于灰分含量的检测,最优模型的测试集决定系数为0.968,预测集均方根误差为0.024。结论 高光谱成像技术可以快速、精准的...  相似文献   

5.
目的? 利用拉曼光谱与中红外光谱的数据融合技术实现对食用酒精乙醇浓度(酒精度)的快速定量检测。方法? 首先,分别采集不同浓度食用酒精水溶液的拉曼光谱与中红外光谱。其次,采用多元散射校正(multiplicative scatter correction, MSC)、卷积平滑(Savitzky-Golay, S-G)、一阶求导的方法对原始数据进行预处理。然后,基于自举软缩减法(bootstrapping soft shrinkage, BOSS)和无信息变量消除算法(uninformative variable elimination, UVE)分别对预处理后的光谱数据进行特征提取,并利用X-Y距离样本集划分法(sample set partitioning based on joint x-y distance, SPXY)将光谱数据划分为校正集和预测集。最后,建立基于拉曼光谱-中红外光谱数据融合的偏最小二乘(partial least squares regression,PLSR)食用酒精乙醇浓度预测模型,并利用麻雀搜寻算法优化的混合核极限学习机算法(SSA-HKELM)提升预测性能,实现对不同浓度食用酒精的快速、准确定量检测。结果? 与拉曼光谱数据、中红外光谱数据以及中红外与拉曼光谱的数据层融合构建的预测模型相比,中红外光谱与拉曼光谱特征层融合数据构建的预测模型具有更好的预测性能。其中,最优模型的校正集均方根误差(root mean squared error of calibration set, RMSEC)为0.98314,校正集决定系数(coefficient of determination of calibration set, Rc2)为0.99634,预测集均方根误差(root mean squared error of prediction set, RMSEP)为1.03256,预测集决定系数(coefficient of determination of prediction set, Rp2)为0.99036。结论? 中红外光谱与拉曼光谱特征层融合预测模型可以实现对不同浓度食用酒精的高效定量检测,为食用酒精的质量检测提供了有效的理论支持与技术保障。  相似文献   

6.
为了实现便携式近红外光谱仪现场快速分析小麦粉中灰分的含量,对125个小麦粉样本扫描并进行多种预处理后,建立了基于偏最小二乘(PLS)的定量分析模型。探讨了基线校正(Baseline)、矢量归一化(Normalize)、SavitskyGolay卷积平滑法、导数、标准正态变量变换(Standard Normal Variate Correction,SNV)以及多元散射校正(Multiplicative Scatter Correction,MSC)这六种预处理方法及其组合方式对建模的影响。结果表明:矢量归一化+Savitsky-Golay滤波平滑法是最佳预处理方法,相应建立的小麦粉灰分含量最佳模型的校正决定系数R_c~2为0.947,交叉验证决定系数R~2v为0.896,校正均方根误差(RMSEC)为0.026,交叉验证均方根误差(RMSECV)为0.037,预测均方根误差(RMSEP)为0.026。无预处理模型的校正决定系数为0.873,交叉验证决定系数为0.832,校正均方根误差为0.044,交叉验证均方根误差0.051,预测均方根误差为0.056;相较于无预处理模型,最佳模型的预测精度和稳健性有了很大的提高。  相似文献   

7.
目的:提出一种利用近红外光谱技术客观评价工夫红茶品质的新方法。方法:实验样品共计240个,手动选择180个样品作为校正级,剩余60个样品作为预测集;利用OPUS7.0软件优化出各模型最佳波数段和最佳预处理方法,平滑点数17,维数1,结合感官审评结果进行建立预测模型,分析预测模型的预测性能。结果:各预测模型预测精准度高,均可用于工夫红茶审评品质预测。其中,各模型校正相关系数(Rc)为96.07%~98.80%,校正均方根误差(RMSEC)为0.148~0.419;预测相关系数(Rp)为90.04%~98.34%,预测均方根误差(RMSEP)为0.105~0.357。各模型校正集和预测集均有较高的拟合度,总分模型预测精准度高于其他几个单因子感官模型。结论:近红外光谱图结合感官审评结果建立的各预测模型预测性能优,适合工夫红茶审评品质评价。  相似文献   

8.
该研究针对目前小麦粉品质方面检测方法存在的问题,提出利用太赫兹光谱技术对小麦粉进行快速无损品质检测研究。使用光谱仪与成像仪,采集了不同种类小麦粉样本的太赫兹光谱,使用TQ Analyst软件结合距离匹配法对小麦粉的太赫兹扫描光谱进行定性分析研究,富强粉和麦芯粉成功分类,模型性能指数达到88.9%,预测准确率达100%。使用OPUS软件结合偏最小二乘法(PLS)和一阶导数+矢量归一化(SNV)进行定量分析研究,水分定量模型R2为91.18%,交叉验证均方根为0.182;灰分定量模型 R2为83.37%,交叉验证均方根为0.064,最终通过实验结果分析得出太赫兹技术在食品品质检测方面的可行性。  相似文献   

9.
凌晨  李素琴  马清蓉  高晓娟 《酿酒》2022,(1):123-127
研究利用近红外技术建立清香型原酒乙酸乙酯和乳酸乙酯的快速检测方法.通过光谱预处理和波数范围的选择与优化,最终得到R2线性关系良好,交叉验证均方根RMSECV较小的最优模型.在对模型进行验证实验中,其近红外预测值与化学实测值之间的R2分别为0.9572和0.9648,预测误差分别为1.37%和1.25%.结果 表明,所得...  相似文献   

10.
酒精度是白酒最重要的品质参数,本文研究一种市售瓶装白酒酒精度拉曼光谱原位无损快速检测方法。首先测定乙醇、瓶装白酒以及酒瓶空白对照的拉曼光谱,利用扩展乘性散射校正预处理方法,以酒瓶的拉曼光谱曲线作为参考,还原乙醇的拉曼特征光谱,然后,提取乙醇的拉曼特征峰值,分别建立瓶装白酒酒精度一元线性回归模型,其中经扩展乘性散射校正预处理后的白酒光谱888 cm~(-1)拉曼特征位移处的模型效果最好,决定系数R~2达到0.9998,均方根误差为0.3077。利用不同酒精度白酒样品验证所建立的瓶装白酒酒精度预测模型,预测值和真实值之间的决定系数R~2为0.9986,均方根误差为0.3382。最后,基于比值校正法对不同品牌、不同包装白酒的模型进行校正和酒精度预测,结果表明,采用拉曼光谱可实现瓶装白酒酒精度的原位无损快速检测。本方法无需拆封,不影响二次销售,为白酒市场监管提供了新的技术手段,也为瓶装食品品质安全的无损快速检测提供了技术参考。  相似文献   

11.
The objective of wheat flour milling is to produce the most favorable distribution of salable product, which means producing as much flour as possible within the end-users’ specifications. Naturally, a flour miller looks for clean, sound, high flour yiel…  相似文献   

12.
目的:快速无损检测小麦粉的品质。方法:搭建主要包括微型近红外光谱仪集成装置、生产线可调速模拟装置、光谱在线采集控制软件和在线建模分析软件四大部分小麦粉品质在线检测系统,针对小麦粉中水分、灰分、面筋指标采用不同建模算法建立定量分析模型,并对在线定量分析模型稳健性进行优化,分析不同试验条件对建模结果的影响。结果:偏最小二乘回归(PLSR)算法对水分、灰分、面筋的定量分析模型均优于多元线性回归(MLR)和主成分回归(PCR)算法。用石英玻璃杯在线采集小麦粉样品的建模效果最佳,15档速度/积分时间6 000 ms最佳配比的建模效果最佳。结论:基于近红外光谱分析技术的小麦粉品质在线检测系统,可以实现小麦粉品质在线无损快速检测。  相似文献   

13.
彩色小麦的理化特性及麸皮粉的品质评价   总被引:1,自引:0,他引:1  
目的研究彩色小麦和普通小麦的理化特性、营养组成及小麦皮层和胚乳中淀粉粒的结构形态和类型,为进一步了解彩色小麦的特性提供理论依据,为彩色小麦的营养加工奠定良好的基础。方法采用国标方法,对彩色小麦的理化指标和营养组成进行综合分析;采用扫描电子显微镜方法观察分析彩色小麦的皮层和胚乳中淀粉粒的结构形态和类型。结果彩色小麦在千粒重、容重等物理特性方面低于普通小麦,且彩色小麦籽粒的长宽比大,没有普通小麦籽粒饱满。在营养组分方面,绿麦3104、紫麦3202、黑麦3201的蛋白质含量分别比普麦烟农19高29.5%、24.4%、21.3%;湿面筋含量分别比普麦烟农19高29.6%、19.0%、17.0%;粗脂肪含量分别比普麦烟农19高31%、10.4%、22.2%。通过扫描电镜对小麦皮层结构分析发现彩色小麦糊粉层中含有大量的糊粉颗粒,集中了小麦籽粒大部分的营养物质。干法制备的麸皮粉,随着碾磨道数的增加,其灰分含量呈升高趋势,出粉率和白度呈降低趋势。结论彩色小麦在营养组成方面与普通小麦相比有很大优势,麸皮粉的品质特性与普通小麦相似,但彩色小麦的胚乳淀粉粒的形态和类型与普通小麦存在很大差异。  相似文献   

14.
针对国家标准法检测小麦粉品质的传统方法存在一定缺陷,提出基于近红外光谱和中红外光谱技术快速检测面粉的方法,并基于偏最小二乘法建立了矫正模型,对小麦粉的灰分、水分、面筋品质指标进行了分析。对于小麦粉的掺杂鉴别问题,基于标准法测光谱距离建立了聚类分析模型,结果表明,可实现对小麦面粉品质的快速检测及掺杂鉴别。  相似文献   

15.
Kavut is a cereal‐based product made from wholemeal wheat and barley flour, milk or milk powder, fat and sugar. In this study, the best processing method and formulation were investigated by analysing different formulations and processing methods for the kavut. Four different flour combinations (100% wheat without barley, 75% wheat + 25% barley, 50% wheat + 50% barley, 25% wheat + 75% barley), two shortening (butter and margarine) and three different roasting periods (1, 1.5, 2 min) at 250 °C were used in the study. Significant changes were observed in the physical and chemical properties of the cereal by heat treatment in the kavut production. Increase of barley flour in the mixture decreased protein content, softness, altered L colour values, appearance, texture, mouth‐feel, and general acceptance and increased ash content, +a and the absorbance value of kavut. While the longer roasting period resulted in reduced softness and colour (L‐value) of kavut, roasting period did not significantly affect the general acceptance of kavut. Kavut made from only whole wheatflour was most preferred by the panellists.  相似文献   

16.
The ash content of wheat flour is used to evaluate its quality but the conventional method of analysis takes several hours. This paper proposes using the potassium ion concentration of wheat flour samples instead of the ash content since the correlation between the two is very good (the correlation coefficient was 0.99). A flow injection analysis (FIA) system based on a potassium ion selective electrode took less than 10min per measurement with a coefficient of variation less than 3%.  相似文献   

17.
小麦粉比对检验结果的分析   总被引:1,自引:1,他引:0  
目的通过分析比对检验的结果,找出企业在检验技术和管理等方面存在的差距和不足,保证企业化验室数据的准确性,防止在检验过程中由于系统误差、操作不当导致错误的检验结果,确保企业化验室在控制食品质量安全中起到应有的作用。方法各实验室按照国家标准对小麦粉灰分进行测定,提交检验的原始检验记录和检验报告,对企业提交的报告进行数据汇总,先利用格鲁布斯检验法对离群值进行剔除,然后对数据用统计法进行分析和评价。结果运用统计方法对泰兴市小麦粉比对检验的结果进行分析,有2个实验室数据离群。结论小麦粉生产企业检验方面存在一些问题,对少数企业灰分检验结果偏离较大的现象进行了探讨,对实验室在检测过程控制、检测结果评价等方面提出了改进建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号