共查询到19条相似文献,搜索用时 109 毫秒
1.
以智能车辆为研究对象,针对车辆模型存在高度非线性动态特性、参数不确定性以及行驶时受外部干扰较多导致控制精度不高、鲁棒性差等问题,提出了采用径向基函数(RBF)神经网络滑模控制方法.建立2自由度线性车辆模型和自由度非线性整车模型,在传统2自由度车辆控制模型状态方程的基础上推导出新的状态方程并以此设计了相应控制器.利用李雅普诺夫(Lyapunov)稳定性理论推导出神经网络的权,并证明控制系统的稳定性.仿真结果表明:与传统的滑模控制方法相比,该方法控制精度高,有较强的鲁棒性. 相似文献
2.
抖振问题是离散滑模控制在实际系统中应用的突出障碍.根据神经网络控制的优点,采用一种基于RBF神经网络的离散滑模控制方法对地震作用下建筑结构的振动控制问题进行了研究.根据离散系统建模技术,得到了离散时间形式的状态方程,同时给出了确定切换面的方法,并推导了控制律的表达式.以一个三层剪切型建筑结构模型为例来验证所提出的离散滑模控制方法的有效性.算例分析结果表明:本文所提出的控制方法能够有效地减小结构的地震峰值响应,同时达到了削弱控制系统抖振的目的. 相似文献
3.
研究了作业型AUV (自主水下机器人)的轨迹跟踪控制问题.实际作业中,水下机械手展开作业过程将引起AUV动力学性能变化,进而影响AUV轨迹跟踪控制;并且水流环境干扰亦将影响AUV轨迹跟踪控制.针对上述AUV轨迹跟踪控制问题,提出一种基于RBF (径向基函数)神经网络的AUV自适应终端滑模运动控制方法.该方法在李亚普诺夫稳定性理论框架下,采用RBF网络对机械手展开引起的AUV动力学性能变化和水流环境干扰进行在线逼近,并结合自适应终端滑模控制器对神经网络权值和AUV控制参数进行自适应在线调节.通过李亚普诺夫稳定性理论,证明AUV系统轨迹跟踪误差一致稳定有界.针对滑模控制项引起的控制量抖振问题,提出一种变滑模增益的饱和连续函数滑模抖振降低方法,以降低滑模控制量抖振.通过AUV实验样机的艏向和垂向的轨迹跟踪实验,验证了本文AUV系统控制方法和滑模降抖振方法的有效性. 相似文献
4.
5.
基于神经网络的PMSM自适应滑模控制 总被引:7,自引:0,他引:7
结合滑模控制和神经网络各自的优点,对永磁同步电机(PMSM)提出了一种基于神经网络的PMSM自适应滑模控制方案.首先设计了带积分操作的滑模变结构位置控制器,通过递归神经网络的在线学习来实时估计系统参数变化和外部负载扰动等不确定性的界限,减小滑模控制器的控制量.进而,在滑模控制器中又引入饱和函数取代符号函数,进一步减弱"抖振"现象.理论分析和实验仿真对比研究的结果表明所提出方法具有优越的动态性能和鲁棒性. 相似文献
6.
7.
针对高速列车动力学模型的不确定性和存在外部干扰难以实现高速列车对目标轨迹的高精度跟踪控制的问题,设计了一种基于非线性干扰观测器的RBF神经网络自适应滑模控制方法。首先,针对高速列车模型非线性系统的不确定性问题,设计自适应RBF神经网络鲁棒控制器进行跟踪控制,基于RBF神经网络的特性设计神经网络权值自适应律,对列车模型中的未知函数进行估计。其次,针对高速列车跟踪控制外部干扰问题,采用指数收敛干扰观测器进行干扰补偿,提高高速列车对目标轨迹追踪的抗干扰能力。最后,李雅普诺夫(Lyapunov)稳定性分析保证了闭环系统的渐近稳定性,以秦沈客运专线为仿真对象。结果表明,所设计的控制方法不仅解决了列车模型未知阻力部分的自适应逼近,而且在此基础上引入干扰观测器对外部非线性干扰进行补偿实现了对期望轨迹的高精度快速跟踪。 相似文献
8.
为了探索解决在无模型控制算法中如何对系统的未知模型和扰动进行准确估计,提出一种基于高阶微分器(HOD)的无模型RBF神经网络滑模控制器(HODRBFSMC).引入HOD估计系统模型的各阶状态变量,并将系统模型的未知项和外界干扰统一归为总扰动,通过RBF神经网络对总扰动进行估计,并根据Lyapunov定理证明所设计控制器的闭环稳定性.为验证控制器的有效性,所设计的控制器被应用于四旋翼飞行器的轨迹控制,解决其模型参数复杂且飞行过程中易受外界干扰的问题.仿真实验表明,所提出方法能够有效估计并补偿总扰动,其轨迹跟踪能力和抗干扰性能相比PID和高阶微分反馈控制(HODFC)具有一定的优越性,能够很好地满足四旋翼飞行器控制的需求. 相似文献
9.
为了提高永磁直线同步电机(PMLSM)的位置跟踪精度,本文提出了一种基于神经网络自适应观测器的反推终端滑模控制(TSMC)方法.首先,建立PMLSM的动力学模型.然后,利用RBF神经网络的万能逼近特性去逼近系统中不确定性,并将逼近后的输出信号输入给自适应观测器进行跟踪目标位置和速度的估计,补偿由不确定性所导致的跟踪误差,进而获得高精度的跟踪性能.同时反推TSMC方法能够保证系统状态在有限时间内收敛,有效改善了系统响应速度和鲁棒性能.此外,设计出一种新型饱和函数来改善系统抖振,并利用Lyapunov稳定性定理进行了闭环系统稳定性分析.最后,通过空载和负载实验证实了该控制方案的有效性. 相似文献
10.
11.
对于Buck变换器系统,考虑到实际应用中负载变动引起系统参数的不确定性,且不确定性上界无法测量的情况,本文拟采用RBF神经网络对不确定性上界进行自适应学习。针对Buck变换器输出电压的控制问题,为了避免普通滑模控制跟踪误差渐进收敛的问题,改善其动态响应速度和稳态性能,本文拟设计一种基于RBF神经网络的上界自适应的终端滑模控制器,并通过Simulink仿真验证这种方法的可行性。 相似文献
12.
针对无人机受扰运动,基于Backstepping方法和非线性滑模控制提出了一种鲁棒神经网络飞行控制方案.对无人机姿态角速度层的系统不确定性项,采用径向基函数神经网络并对其权值进行在线调整,从而实现对其进行逼近.将回馈递推设计方法与滑模控制方法结合起来,基于神经网络的输出为无人机设计了一种回馈递推滑模飞行控制器.所设计的飞行控制器用于无人机的姿态控制,仿真结果表明所研究的无人机鲁棒神经网络飞行控制方案是有效的. 相似文献
13.
为了解决传统滑模观测器方法应用在永磁同步电机无传感器矢量控制时所产生的抖振问题,使用RBF神经网络动态调节观测器的切换增益,即使其输入为传统滑模估计方案中的电流估计误差,输出为滑模增益;同时为了简化系统结构、提高方案可行性,将RBF神经网络设计为单输入单输出的结构,并将网络的学习和工作过程融合,使其在自身网络参数的不断优化中实时输出滑模增益,以增强系统鲁棒性。最后通过Matlab/Simulink软件对该系统进行建模仿真,并将该方法与传统滑模观测器方法进行对比。实验结果表明,该方案能够为矢量控制提供更加准确的转子位置及速度信息,提高了整个电机控制系统的稳定性。 相似文献
14.
基于模糊神经网络的滑模控制 总被引:9,自引:1,他引:9
研究了一类不确定性非线性系统的滑模变结构控制,提出了一种基于模糊神经网络(Fuzzy Neural Networks)的滑模变结构设计方法,设计了控制器的结构,利用动态反向传播算法实现滑模控制,这种方法与一般变结构控制相比不但具有强的鲁棒性而且还能有效地消除抖动现象,同时在设计中不需要知识系统中不确定性和扰动的上界,另外还运用Lyapunov函数从理论上分析上了系统的稳定性。仿真结果说明了本文所提 相似文献
15.
16.
基于FNN的滑模自适应控制 总被引:2,自引:0,他引:2
研究一类不确定性非线性系统的直接自适应控制方法。该方法由滑模控制器和模糊神经网络构成,通过平滑切换实现自适应控制策略。仿真结果表明,这种方法既有强鲁棒性,又能有效地消除高频颤动。 相似文献
17.
18.
针对工业技术的发展对于多关节机械臂的精度与快速控制高要求,提出了一种机械臂卷积神经网络滑模轨迹跟踪控制方法。分析机械臂动力学方程,提取其中的不确定部分,针对不确定部分,构建深度卷积神经网络对其进行补偿,将补偿部分引入到滑模控制律中,通过改进后的滑模控制实现对机械臂轨迹跟踪的精确控制,并通过构建Lyapunov函数论证了系统的稳定性。仿真结果显示该方法能够满足轨迹跟踪要求,且减小了抖振现象。通过与其余三种典型控制方法的对比,测试结果表明,该方法加快了轨迹跟踪误差的收敛,且跟踪精度有了明显的提高。 相似文献
19.
本文提出了一种基于神经网络与二阶滑模控制融合的控制策略用于非线性机器人控制,设计了一种新颖简易的二阶滑模控制方法,有效地避免了常规变结构控制的抖震问题,并采用神经网络辨识未知的机器人的非线性模型,通过Lyapunov直接法设计网络的权值更新率,确保了系统闭环全局渐近稳定性。最后,通过仿真验证了算法的有效性。 相似文献