共查询到20条相似文献,搜索用时 62 毫秒
1.
《徐州建筑职业技术学院学报》2019,(4):29-34
针对传统的文本分类深度学习模型由于收敛速度慢或严重依赖于预先训练好的词向量,在大规模数据集上通常耗时较长,提出了一种结合卷积神经网络(CNN)、门控循环单元(GRU)和高速公路网络(HN)的字符级短文本分类模型,该模型具有快速收敛的捕获全局和局部文本语义的能力.此外,将误差最小化极值学习机(EM-ELM)引入到模型中,进一步提高了分类精度.实验表明,与现有方法相比,该方法在大规模文本数据集上取得了更好的性能. 相似文献
2.
针对短文本分类问题,提出基于伪相关反馈(PFR)的短文本扩展与分类方法.在保持语义不变的情况下,利用互联网中的相似语料对短文本的内容进行了扩展.对现有的仅使用局部特征的扩展语料特征抽取方法进行改进,引入全局特征抽取,将全局特征与局部特征相结合得到了更好的特征向量,有效地解决了分类过程中由短文本长度有限导致的特征矩阵高度稀疏的问题.通过在开放数据集上的测试和与其他文献的结果比对,验证了该方法在短文本分类的问题上可以取得较好的效果. 相似文献
3.
随着信息技术的迅速发展,网络上产生了海量的中文短文本数据.利用中文短文本分类技术,在低信息量的数据中挖掘出有价值的信息是当前的一个研究热点.中文短文本相较于长文本,存在字数少、歧义多、特征稀疏和信息不规范等特点,导致使用传统文本分类技术效果不佳.首先介绍中文短文本分类技术的研究现状;其次围绕中文短文本分类的基本流程和关... 相似文献
4.
为了利用已有的分类方法对短文本信息进行分类,选取大量长文本作为训练集,以此形成“词典”,并利用改进的简单向量距离算法实现分类.理论和实验结果表明,该方法非常适用于短文本信息的分类. 相似文献
5.
6.
为充分利用信号的时序相关性特征,增强模型对数据信息的全面挖掘能力,以进一步提高卷积神经网络(CNN)诊断精度,本文将CNN与善于处理数据时序相关性特征的门控循环单元(GRU)相结合,提出了一种新的齿轮箱故障诊断模型。CNN通过端对端的方式提取数据空间特征,并将提取的特征作为GRU的输入进一步提取时空特征,最后将GRU提取的时空特征作为SoftMax的输入进行故障识别。两组齿轮箱实验数据分析结果显示:平均故障诊断精度分别可达99.86%和99.85%,与其它现有模型的结果对比体现了本文模型的有效性和优越性。 相似文献
7.
针对BING算法对物体建模的不足,提出了multi-BING算法。该算法计算训练样本的CS-LBP特征,并对其进行聚类,对聚类后的数据建立BING模型。在物体检测过程中,融合了多个模型结果进行候选框判别,将多标签图像分类问题转化为多个单标签分类问题。以Fast R-CNN模型为基础,将采用本文物体检测方法得到的候选框作为模型输入。同时,采用LReLU函数作为Fast R-CNN模型的激活函数,从而在几乎不增加计算复杂度的情况下,提高模型的平均准确率(AP)。实验表明,本文方法优于BING算法和OBN算法。 相似文献
8.
基于积分图运算的阈值分割将图像二值化,使用仿射变换完成文本字段图像的方向校正,从而实现文本行的定位.在原始卷积循环神经网络(CRNN)的基础上,将骨干网络替换成MobileNet-V3结构,在2层LSTM之间加入注意力机制,同时引入中心损失函数.利用改进的CRNN实现文本行字符的识别.将改进后的CRNN在40 510张芯片文本行图像上进行测试.通过小样本数据集进行模型微调训练得到多个子模型,从而实现集成推理,使用3个模型的综合识别准确率稳定在99.97%左右,单张芯片图像的总识别时间小于60 ms.实验结果表明,改进的CRNN算法的准确率比原始CRNN提升了大约27.48%,多模型集成推理的方法可以实现更高的准确率. 相似文献
9.
使用深度学习技术进行文本情感分类是近年来自然语言处理领域的研究热点,好的文本表示是提升深度学习模型分类性能的关键因素。由于短文本蕴含情感信息较少、训练时易受噪声干扰,因此提出一种融合对抗训练的文本情感分析模型PERNIE RCNN。该模型使用ERNIE预训练模型对输入文本进行向量化,初步提取文本的情感特征。随后在ERNIE预训练模型的输出向量上添加噪声扰动,对原始样本进行对抗攻击生成对抗样本,并将生成的对抗样本送入分类模型进行对抗训练,提高模型面临噪声攻击时的鲁棒性。实验结果表明, PERNIE RCNN模型的文本分类性能更好,泛化能力更优。 相似文献
10.
针对人工设计的中低层特征难以对LiDAR数据进行高精度分类以及泛化性能较低等问题,提出了一种基于集成卷积神经网络的LiDAR数据分类方法.它是基于深度学习模型与随机子空间的集成学习框架.通过有放回的随机抽取LiDAR训练集构成子集,以深度卷积神经网络模型为单个子分类器,最后采用多数投票法确定最终样本的类别,以获得更好的... 相似文献
11.
A novel convolutional neural network based on spatial pyramid for image classification is proposed. The network exploits image features with spatial pyramid representation. First, it extracts global features from an original image, and then different layers of grids are utilized to extract feature maps from different convolutional layers. Inspired by the spatial pyramid, the new network contains two parts, one of which is just like a standard convolutional neural network, composing of alternating convolutions and subsampling layers. But those convolution layers would be averagely pooled by the grid way to obtain feature maps, and then concatenated into a feature vector individually. Finally, those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer. This generated feature vector derives benefits from the classic and previous convolution layer, while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network. Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model. 相似文献
12.
提出并实现了一种结合BP神经网络和遗传算法的文本分类算法,根据遗传算法能够快速优化网络权重以及摆脱BP算法局部极点困扰的能力,提出一种改进的遗传算法确定网络拓扑结构和训练网络的方法.最后对设计的分类器进行了开放性测试,实验结果表明该分类器显著地提高了文本分类的查全率和查准率. 相似文献
13.
The complicated electromagnetic environment of the BeiDou satellites introduces various types of external jamming to communication links, in which recognition of jamming signals with uncertainties is essential. In this work, the jamming recognition framework proposed consists of feature fusion and a convolutional neural network (CNN). Firstly, the recognition inputs are obtained by prepossessing procedure, in which the 1-D power spectrum and 2-D time-frequency image are accessed through the Welch algorithm and short-time Fourier transform (STFT), respectively. Then, the 1D-CNN and residual neural network (ResNet) are introduced to extract the deep features of the two prepossessing inputs, respectively. Finally, the two deep features are concatenated for the following three fully connected layers and output the jamming signal classification results through the softmax layer. Results show the proposed method could reduce the impacts of potential feature loss, therefore improving the generalization ability on dealing with uncertainties. 相似文献
14.
王明令 《兰州工业高等专科学校学报》2010,17(6):1-4
目前有多种特征提取方法用于文本自动分类,其中CHI方法效果较好,研究发现CHI方法存在着词与类别的无独立性假设及计算复杂度高等缺点,提出一种改进了的CHI方法ICHI(ImprovedCHI),通过分类实验仿真数据显示,在SVM与KNN分类中这种改进后的特征提取方法ICHI特征提取效果优于传统的CHI方法,改进后的方法ICHI能提高文本分类的准确率,适合局部特征提取. 相似文献
15.
针对新闻文本分类方法中词向量的表示无法很好地保留字在句子中的信息及其多义性,利用知识增强的语义表示(ERNIE)预训练模型,根据上下文计算出字的向量表示,在保留该字上下文信息的同时也能根据字的多义性进行调整,增强了字的语义表示。在ERNIE模型后增加了双向门限循环单元(Bi GRU),将训练后的词向量作为Bi GRU的输入进行训练,得到文本分类结果。实验表明,该模型在新浪新闻的公开数据集THUCNews上的精确率为94. 32%,召回率为94. 12%,F1值为0. 942 2,在中文文本分类任务中具有良好的性能。 相似文献
16.
针对已标记数据与未标记数据分布不一致可能导致半监督分类器性能降低的不足,提出了一种基于特征映射的半监督文本分类算法.首先通过不同的特征选择方法,分别在训练集的已标记数据、未标记数据以及测试集数据中选取各自的特征集,并初始化特征的权值;在此基础之上,分别建立已标记数据与未标记数据、已标记数据与测试集数据、未标记数据与测试集数据之间的映射函数,并利用这3个特征映射函数重新计算特征的权重;最后利用期望最大比(expectation maximization,EM)算法进行半监督文本分类.在标准数据集上的实验结果表明:提出的算法是有效的. 相似文献
17.
为了利用商品文本标题实现商品自动分类,提出一种基于高层特征融合的商品分类模型.首先,提出基于字嵌入和词嵌入的文本底层特征表示法,进而获得更强的商品标题结构特征表达;其次,提出了联合自注意力、卷积神经网络和通道注意力的机制,对文本标题的底层特征进行增强并获得高层增强特征;最后,通过将文本的字嵌入和词嵌入的高层增强特征进行融合,最终获得商品文本标题的综合特征,并实现商品自动分类.以商品标题语料作为数据集进行了实验,实验结果表明,该模型对三级商品类别的分类精度能够达到84.348%,召回率和F1值分别达到了47.8%和49.4%,优于现有可用于商品文本标题分类的先进短文本分类方法. 相似文献
18.
基于特征提取的缺陷图像分类方法 总被引:2,自引:0,他引:2
针对缺陷图像表面复杂多变、特征不宜提取的特点, 提出了一种归一化转动惯量特征和不变矩特征相结合的时域分析方法来构建缺陷图像的统计特征量, 同时增加缺陷矩形框区域内压缩度、距离极值比和线度特征量作为缺陷分类的依据;提出了在缺陷频谱图像内提取特征量的频域分析方法, 并将矩形框区域内所有像素点灰度平均值和灰度方差值作为缺陷分类的另一重要依据;同时将BP神经网络应用于缺陷图像的自动分类中, 构建了系统的缺陷分类器, 并对现场采集的常见6种缺陷类型进行了实验.结果表明, 该特征提取方法在很大程度上提高了特征的分类有效性;该BP分类器识别率较高, 现场整体识别率达到90%以上, 在一定程度上解决了缺陷图像分类难的问题. 相似文献
19.
提出了一种基于卷积神经网络的3D人体特征识别算法。首先,获取训练数据,具体包括数据的去冗余、3D到2D的投影以及人体局部区域图像的获取。然后,根据局部图像的大小,设计神经网络的结构,并进行参数初始化,对网络进行训练,通过调整网络参数提高网络的准确度。基于训练好的网络,通过对人体自上而下的扫描获取的人体局部图像进行特征识别并获取其对应的特征概率,通过阈值以及特征变化判定出特征出现在人体的的相对位置。然后,使用最小二乘拟合将经过该位置的横向切面与3D人体模型相交的二维点离散坐标点进行闭合曲线拟合,计算出人体各部位的尺寸。最后将测试结果与标准测量结果进行比较,计算出误差值。仿真实验结果表明,通过该方法可以较好的实现对各种差异性3D扫描人体模型的特征识别。 相似文献
20.
为改善动态卷积神经网络在文本情感分类方法中的泛化能力,提出了一种动态卷积超限学习算法.对动态卷积神经网络的输出层加以改进,使用浅层随机神经网络替代全连接层,利用参数随机生成的扰动性能,降低分类端对训练样本的依赖,避免过拟合,提升分类性能.在公共数据集上的实验证明:相对改进前的动态卷积学习算法以及超限学习机,所提出的方法在准确率、F1测度等多个标准指标上均体现了更优的分类性能. 相似文献