首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于0.13 μm SiGe BiCMOS工艺,设计了一种W波段平衡式功率放大器。采用了由两个单级放大器和两个3 dB差分正交耦合器组成的全差分结构。采用变压器匹配网络,实现了良好的输入与输出匹配性能。利用三维电磁场仿真软件进行了电磁仿真。仿真结果表明,在90~100 GHz频段内,输入与输出的匹配良好,输入反射系数S11小于-17 dB,输出反射系数S22小于-14 dB。在94 GHz频率处,小信号增益为6.1 dB,输出1 dB压缩点功率为10.2 dBm。芯片尺寸为1.22 mm × 1.42 mm。该功率放大器适用于通信、雷达、成像等领域。  相似文献   

2.
余振兴  冯军 《电子学报》2015,43(2):405-411
本文提出了一种超宽频带毫米波混频器电路.混频器采用分布式拓扑结构和中频功率合成技术,具有宽带宽和高转换增益.该混频器采用TSMC 0.18-μm CMOS工艺设计并制造,芯片总面积为1.67mm2.测试结果表明:混频器工作频率从8GHz到40GHz,中频频率为2.5GHz时的转换增益为-0.2dB至4dB,其本振到中频端口和射频到中频端口间的隔离度均大于50dB.整个电路的直流功耗小于32mW.  相似文献   

3.
朱海涛  张弘  许唐红  王东  兰敏 《电讯技术》2012,52(11):1796-1800
采用双平衡场效应管结构和阻抗匹配技术设计了一种适用于短波宽带接收机的高线性混频器,通过调整场效应管的沟道宽度和偏置电压优化了混频器的性能指标.该混频器射频输入频率为1.5~ 30 MHz,本振输入频率为71.5~100MHz,中频输出频率为70 MHz.测试结果表明:输入三阶截点高于40 dBm,变频损耗小于7dB,1 dB压缩点高于12 dBm,单边带噪声系数小于7dB.  相似文献   

4.
设计了一种低本振驱动的高线性混频器,重点关注混频器的线性度性能和本振驱动功率问题.混频器的核心电路结构包含比较器,本振驱动器,双平衡无源混频器和带隙基准电路.为了提供本振信号通路的单端转差分功能,以及减小混频器对本振驱动功率的要求,引入比较器和本振驱动器,并采用双平衡无源混频器提供良好的线性度.采用0.18μm的SiGe双极兼容互补金属氧化物半导体(BiCMOS)工艺,同时支持上变频和下变频功能.实测结果表明,射频端口可覆盖6~18 GHz频段的信号,中频端口可覆盖0~6 GHz频段的信号;下变频时和上变频时的变频损耗典型值分别为-10.0 dB和-9.8 dB;IIP3在工作频段内的最大值分别为23.0 dBm和23.4 dBm;功耗为500 mW.在实现高线性度混频器的基础上,减小了输入本振功率的需求,提高了高线性混频器的实用性.  相似文献   

5.
马何平  徐化  陈备  石寅 《半导体学报》2015,36(8):085002-7
本文描述了一种工作在2.4GHz ISM频段的低功耗、低中频射频接收机前端电路,使用TSMC 0.13um CMOS工艺。整个前端包括一个低噪声放大器以及两次变频下变换混频器。低噪声放大器通过在输入级引入额外的栅-源电容实现了低功耗与低噪声的设计;在下变换混频器设计中,分别使用一个单平衡射频混频器以及两个双平衡低中频混频器实现两次变频下变换技术;射频混频器输入晶体管源极串联电感-电容谐振网络以及低噪声放大器输出级的电感-电容谐振网络总共实现了30dB的镜像抑制率。整个前端占用芯片面积约0.42mm2,在1.2V的供电电压下,仅耗功率4.5mW,实现了4dB的噪声系数,在高增益模式下,获得-22dBm的三阶交调线性度,整个链路电压增益为37dB。  相似文献   

6.
采用TSMC 0.25μm CMOS工艺,设计了一个全集成2.4 GHz低中频蓝牙接收机前端,包括低噪声放大器(LNA)和混频器(Mixer)。LNA采用源极电感负反馈差分结构,混频器采用吉尔伯特(Gilbert)有源双平衡结构。在2.5 V工作电压下,整个接收机前端增益22.5 dB,噪声系数6.3 dB,三阶输入截止点-15.3 dBm,功耗38.4 mW。  相似文献   

7.
邹雪城  余杨  邹维  任达明 《半导体技术》2017,42(10):721-725
设计了一种带片内变压器、适用于0.05~2.5 GHz频段的宽带低噪声放大器(LNA).电路设计采用了并行的共栅共源放大结构,将从天线接收到的单端输入信号转换为一对差分信号输出给后级链路.针对变压器结构的LNA噪声系数不够低和输出不平衡的问题,采用了缩放技术、噪声消除技术以及两级的全差分放大器作为输出缓冲级,来有效降低电路的噪声系数,提高增益和输出平衡度.电路采用TSMC 0.18μm 1P6M RF CMOS工艺设计仿真和流片,测试结果表明:在0.05 ~ 2.5 GHz频带范围内,该LNA的最高功率增益达24.5 dB,全频段内噪声系数为2.6~4 dB,输入反射系数小于-10 dB,输出差分信号幅度和相位差分别低于0.6dB和1.8°.  相似文献   

8.
本文介绍了一个基于薄膜电路工艺设计、加工的X波段下变频器.首先对整体方案进行分析论证,然后运用安捷伦公司的ADS仿真设计软件,对射频及中频滤波器、朗格电桥、低噪声放大器和混频器等电路单元及变频器系统进行了仿真设计.最后经过加工测试验证,该变频器性能指标良好.其工作频率为9.35GHz - 9.85GHz,变频增益≥26dB,噪声系数≤2dB,P01dB压缩点功率≥10dBm,输入、输出驻波≤1.3,镜像抑制比≥50dB;本振输入为0±1dBm.整个电路腔体结构尺寸为70mm×20mm×10mm.  相似文献   

9.
针对毫米波宽带通信、雷达和测试仪器领域的应用需求,提出一种E波段宽带高中频(IF)单平衡混频器。射频(RF)及本振(LO)信号通过多分支宽带加宽波导正交耦合器输入,通过鳍线过渡结构将信号从波导传输模式过渡到微带模式,并提供宽带中频信号及直流接地回路;中频输出低通滤波器可有效抑制LO及RF信号,并为其提供等效接地回路。利用肖特基二极管的非线性实现混频,并通过微带匹配电路最终实现宽带低损耗混频效果。混频器采用57.6、62.4、67.2 GHz 3个点频本振,将67~85 GHz的射频信号分段下变频至9.4~17.8 GHz的中频范围内。测试结果表明,在67~85 GHz射频频率范围内,射频输入功率为-15 dBm,本振输入功率为12 dBm时,混频器变频损耗为7.1~10.1 dB,对组合杂散的抑制在36 dBc以上。  相似文献   

10.
基于LTCC技术的C频段星载接收机混频器   总被引:1,自引:1,他引:0       下载免费PDF全文
利用低温共烧陶瓷(LowTemperature Co-fired Ceramic,简称LTCC)技术,设计制作了一种可应用于C频段星载接收机的双平衡混频器。该混频器将射频和本振巴伦等无源器件集成在多层LTCC基板内,实现了电路的小型化、高集成度和高可靠性。测试表明,当射频输入为5.925~6.425GHz、本振频率为2.225GHz、中频输出频率为3.7~4.2GHz时,混频器的变频损耗≤9.3dB,P1dB为5.7dBm,本振到射频和本振到中频的隔离度分别为39.44dB和35.58dB。混频器的尺寸为40×22×1.92mm3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号