首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于翼型参数化方法对翼型S809进行4类不同的前缘修改,分别为前缘压力面加厚、前缘吸力面加厚、前缘上弯和前缘下弯,采用翼型设计分析软件Xfoil和商用CFD(Computational Fluid Dynamics)软件FLUENT分别对翼型气动参数和翼型周围流场进行计算。结果表明:翼型气动特性与流场特性受翼型压力面外形变化影响较小;在研究范围内,翼型吸力面加厚使得翼型在失速区升力系数增加,阻力系数减小;翼型前缘上弯使得翼型在大攻角工况下升力系数减小,阻力系数增大,且使翼型提前失速;在一定范围内翼型前缘下弯,使得翼型升力系数增大,阻力系数减小,且延迟失速。  相似文献   

2.
基于被动流动控制理论及常用气动噪声预测方法,在S809翼型前缘吸力面附加微小翼型,以提高主翼抵抗流动分离的能力。采用数值模拟方法,在α=6°~24°来流攻角范围内计算复合翼的气动性能及噪声特性,并分析了流动控制机理。结果表明:在失速攻角之前,复合翼的气动性能表现优于原始翼型,有明显增升效果,但其气动噪声特性相比原始翼型较差;在大攻角下,前缘小翼的存在将主翼来流失速临界攻角由α=16°延缓至α=22°,且有明显降噪作用,复合翼相比原始翼型在接收点处的噪声总声压级最大可以减小7.23%。  相似文献   

3.
基于翼型参数化方法对翼型S809进行两类不同的前缘修改,采用翼型设计分析软件Xfoil对修改前、后的翼型进行气动性能计算分析,并采用计算流体力学(CFD)数值模拟方法进行流场特性分析。结果表明:翼型前缘下弯使得翼型在失速区升力系数增大,阻力系数减小,俯仰力矩系数减小,转捩现象延迟,翼型前缘上弯对气动性能的影响与之相反;翼型前缘上弯和下弯使得翼型表面压力系数分布均匀,吸力面及压力面压力系数增大;翼型前缘下弯能够抑制流动分离,抑制涡的形成,延迟翼型失速,翼型前缘上弯对翼型流场特性的影响则与之相反。  相似文献   

4.
为研究前缘对翼型气动性能影响,以NACA0012翼型为基础,通过曲线参数化方法改变翼型前缘吸力面及压力面型线,设计了8种不同前缘的翼型,并采用SST k-ω湍流模型研究了翼型在俯仰运动过程中的动态失速特性。结果表明:翼型动态失速特性受翼型压力面外形的影响较小;翼型吸力面加厚,将有效改善俯仰运动过程中的动态气动性能;翼型前缘弯度上弯将加剧翼型失速现象;翼型前缘弯度下弯可在一定程度上有效抑制动态失速现象,且变形量越大,抑制效果越好。  相似文献   

5.
受自然界鸟类在应对阵风或着陆时翅膀上表面(吸力面)羽毛轻微抬起现象启发,以NACA0018翼型为基础,在其吸力面加装类似鸟类羽毛的弹片,通过数值模拟方法研究流动分离状态下弹片对翼型气动性能及气动噪声的影响。结果表明:翼型在流动分离状态下,依据原始翼型边界层分离特点给出特定抬起角度的弹片,能有效抑制流动分离区前移,减小流动分离,较之原始翼型其升力系数上升、阻力系数下降;流动分离区与翼型尾缘处声压级有所减小,周向总声压级呈偶极子分布且整体有所降低。  相似文献   

6.
动态失速现象严重影响风力机气动性能,在翼型前缘布置主动式气动滑片可有效改善失速现象。为此基于NACA0012翼型,通过数值模拟研究气动滑片对翼型气动性能及噪声特性的影响。结果表明:前缘气动滑片可有效提高翼型上仰过程中的气动性能,较原始翼型气动滑片翼型的平均升力系数提高24.2%、阻力系数降低11.7%;翼型上仰过程中,气动滑片可抑制前缘分离涡向尾缘发展,延缓前缘与尾缘分离涡的融合,阻止分离涡从翼型表面脱落;气动滑片并未增加翼型噪声水平,但降低了翼型尾缘压力功率谱主频;当改变翼型折合频率时,气动滑片翼型的总声压级与原始翼型保持一致。  相似文献   

7.
该文采用实验测量和数值计算相结合的方法,以DU93-W-210翼型为研究对象,研究仿生凹凸前缘结构对其降噪效果的影响。运用远场麦克风阵列获得光滑前缘翼型和凹凸前缘翼型的气动噪声,并通过数值计算得到翼型表面流场结果。通过对实验和数值计算结果的分析发现:凹凸前缘方法能有效抑制边界层分离,控制翼型吸力面涡量的团状分布,减小翼型表面的压力脉动,分解大尺度高强度脱落涡为小尺度低强度周期性脱落涡,使得仿生凹凸前缘翼型有明显的降低气动噪声的作用;具有凹凸前缘的幅值为0.24c(c为平均弦长)、波长为0.11c的仿生翼型降噪效果更为突出。  相似文献   

8.
针对低雷诺数下翼型的非定常气动噪声特性,采用计算流体力学(CFD)与Lighthill声类比相结合的方法,分别对俯仰、平振以及俯仰与平振耦合运动的翼型进行了分析,通过自定义程序控制翼型的运动规律,并对其流场及诱导的声场特性进行了数值仿真.结果表明:随着折合频率、振幅的增加,翼型表面升力系数的峰值增大,非定常迟滞效应增强;耦合运动的相位差改变了气动力的响应特性;对于振荡翼型激发的噪声,低频下单极子声源占主要地位;随着声源频率的增大,远场声压指向性逐渐体现出偶极子声源的特性.  相似文献   

9.
利用Fluent软件预测了风力机翼型在覆冰状态下的气动性能和气动噪声,采用大涡模拟与基于Lighthill声类比的FW-H模型相结合的方法模拟了不同覆冰状态下的声压级频谱和功率谱密度分布特征,分析了攻角和来流风速对声压级频谱和功率谱密度分布特征的影响。结果表明:覆冰使翼型的气动性能下降,升力减小,气流与壁面提前分离并进入失速区;明冰对翼型气动性能的影响最显著,霜冰次之;翼型覆冰后气动噪声明显增大,尤其覆明冰时翼型的气动噪声更突出;翼型覆冰前后气动噪声均随攻角增大而提高,未达到和超过失速攻角时气动噪声分别呈低频离散特性和宽频特性;来流风速对气动噪声的影响体现在总声压级上,各监测点的总声压级均随来流风速的增大而增强。  相似文献   

10.
采用大涡模拟技术对长耳鸮翅膀展向20%、40%和60%截面处翼型的非定常湍流场进行数值模拟,并基于Lighthill声类比方法对非定常流场诱导的声场进行计算,研究上述仿生翼型的气动与声学性能。研究结果表明:三种仿生翼型均具有高升阻比特性,其中20%、40%截面处翼型的升力系数较高,5°攻角下分别为1.86和1.72;20%截面处翼型阻力系数最高,且在强烈的逆压梯度下,20%和40%截面处翼型气流在压力面前缘开始分离,在下游处自由剪切层产生了明显的不规则涡结构;翼型尾缘处,涡流脱落后在尾迹区发生涡结构破碎;60%截面处翼型载荷分布最均匀,附面层增长缓慢,因而该翼型流场的涡量相对较小,使得其诱导噪声较低。声学计算结果表明,三种仿生翼型的最大声压级分别为85.8、78.6和74.8 d B。  相似文献   

11.
以NACA0018翼型为原始模型进行前缘结构设计,采用计算流体动力学(CFD)方法分析凹凸前缘结构参数对叶片绕流流动及气动性能的影响。结果表明:在0°~10°攻角范围内,凹凸前缘叶片气动性能与原始叶片基本一致,但在15°~25°攻角范围内,正弦波形凹凸前缘叶片升力系数最大提升20.2%;叠加波形凹凸前缘叶片在15°~25°攻角内,气动性能均有不同程度的下降,波峰处推迟分离,而在波谷分离提前,在吸力面每个波谷顺流方向叶片及展向形成反向涡对,相互卷吸并与主流掺混增加能量交换向尾缘处移动,改变了叶片原始流场反馈回路,阻碍了叶片展向涡及流向涡的发展。  相似文献   

12.
为分析弹片对翼型气动及噪声方面的影响,以NACA0022为原始翼型,通过在其吸力面加装不同形式的固定气动弹片,比较原始翼型与弹片翼型的气动性能和噪声特性。采用大涡模拟,计算来流风速为29.4 m/s,迎角范围在4°~24°内翼型气动性能和流场分布的变化。研究翼型噪声产生机理,运用FW-H方程进行声学计算,并通过傅里叶转换进行频谱分析。数值计算结果表明:大于12°攻角下,弹片翼型较原始翼型气动性能改善明显,升力系数最大可提高27.31%,且有效推迟翼型的失速产生,单个气动弹片翼型表现更优;大于8°攻角时,气动弹片对监测点处噪声总声压级增大效果并不明显,最大仅为1.90%,且翼型噪声总声压级在指向性分布上呈现较为明显的偶极子分布。  相似文献   

13.
针对在大来流攻角下,NACA0015翼型发生的流动分离现象,在翼型吸力面前缘加装微小平板研究平板不同加装位置对翼型流动控制效果的影响。在风洞中,通过测力天平,得到翼型升阻力特性变化曲线;再通过烟线实验进行流场可视化。研究表明:当微小平板水平加装位置X=0,垂直加装位置Y=0.07c(c为翼型弦长)时,控制翼型流动控制效果最佳,失速攻角推迟了19°;在翼型前缘正前方或正上方一定距离加装微小平板,都能有效抑制翼型吸力面的流动分离,提高翼型的气动性能。  相似文献   

14.
Re=1×10~6的条件下,在S809翼型前缘设置微小圆柱,分别研究了静止及振动的微小圆柱对S809翼型气动性能的影响。数值模拟的结果表明:S809翼型前缘适当位置设置静止及一定振动方式的微小圆柱均能明显降低阻力系数、减小或抑制流动分离区的大小、改善流场状况;在翼型前缘点吸力面正上方6%弦长处,设置直径为2%弦长的静止圆柱可以完全抑制翼型的流动分离;当圆柱直径变小时,静止微小圆柱控制流动分离的效果变差,但此时给圆柱一定规律的振动后,又可以达到较好的流动分离控制效果。  相似文献   

15.
将前缘缝翼思想运用到离心风机中,研究了叶片前缘开缝设计参数对离心风机内部流场及其声辐射的影响规律。研究表明:叶片前缘开缝使气流通过狭缝得到加速,抑制后叶片吸力面边界层分离;同时,开缝设计使叶轮内部压力脉动明显减弱,降低离心风机气动噪声源强度,存在最佳开缝参数组合使离心风机流动与降噪效果达到最佳;设计工况下,当开缝位置L/C=0.30,前叶偏转角θ=4°,且前、后叶片最大相对厚度相等时,离心风机全压提高7%,效率提高2%,其远场噪声各测点总声压级平均下降3.5 dB。  相似文献   

16.
对S809和S805 2种厚度不同的翼型进行尾缘修剪,采用翼型设计分析软件Xfoil对修剪前后翼型的气动性能进行计算,研究了不同程度尾缘修剪对翼型气动性能的影响,并采用CFD数值模拟方法进行流场特性分析.结果表明:尾缘修剪后会引起翼型在附着流区升力系数减小,最大升阻比减小,减小程度随着修剪程度的增加而加剧;对于厚度不同的翼型,尾缘修剪对其影响的主要区别在于失速区较厚翼型阻力系数减小,较薄翼型升力系数增大;翼型表面压力系数因尾缘修剪而发生改变,较厚翼型压力分布变化较为明显;尾缘修剪对尾流的扰动会影响翼型表面其他部位的流动,进而影响翼型气动性能.  相似文献   

17.
《动力工程学报》2016,(6):473-479
通过对柔性尾缘襟翼(DTEF)参数化建模,实现了对尾缘襟翼柔性变形与控制.采用数值模拟方法研究DTEF对翼型整体静态与动态气动性能的影响及流动机理.结果表明:DTEF位于不同摆角时,翼型升力系数与阻力系数均有不同程度的明显改变,随着攻角的增大,襟翼改变翼型气动性能的能力降低,对襟翼附近的流动影响亦减弱;DTEF动态运动过程中,翼型升力系数滞后于摆角的变化,DTEF改变升力系数的能力降低,翼型阻力系数超前于摆角的变化,DTEF改变阻力系数的能力增加,此动态效应随摆动周期减小而增强,并在翼型表面压力系数与尾迹涡量上有一定体现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号