共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
在全部微博内容中,由用户转发而产生的信息占有非常大的比例。同时,内容的转发也是微博中信息传播的主要途径。因此,用户的转发行为有着重要的研究价值,可应用于社交营销、微博检索、热点事件预测等领域中。该文中,我们通过分析所收集的大量真实的新浪微博数据,发现影响用户转发行为的一些因素: 微博作者、用户兴趣以及微博热度。基于这些发现,该文提出了一种新颖的基于LDA模型的方法,综合利用以上3个特征预测用户转发行为。为了对该方法进行评价,我们利用收集的大量的微博数据及对应的社交网络结构模拟真实用户环境。实验表明,该方法的性能优于目前最好的方法,F值比其他基线方法高出35%—45%。 相似文献
4.
5.
《计算机应用与软件》2016,(11)
微博转发预测是研究信息传播的关键问题之一,对于舆情监控、广告投放、商业决策具有重要意义。用户兴趣、微博作者影响力及微博内容等信息均影响信息传播过程。转发行为预测的挑战性问题在于如何捕获更多有意义的影响因素以提高预测性能。提出基于混合特征学习的转发预测方法,该方法首先引入并分析了局部社会影响力特征、用户特征、微博内容特征的计算方法;接着,基于分类器建立预测模型;最后,比较了不同类型微博的转发预测效果。在新浪微博平台数据的实验结果表明,局部社会影响力特征、用户特征、微博内容特征都对转发预测有较大影响,其中微博内容特征的影响最大。随机森林预测效果最好,准确率达到83.1%;与朴素贝叶斯、逻辑回归、支持向量机模型相比,准确率平均提高约7.4%,最高提高约10.8%。另外,该方法对自然灾害、环境、审判、维权等类型的微博进行转发预测时,效果更加明显,说明这类事件转发的规律性更强。 相似文献
6.
转发是微博提供的一个信息传播的机制,用户能够将关注者发布的有趣微博转发到自身平台,然后分享给追随者,是微博网络中信息传播最重要的功能。对于微博网络存在的不同类型连接关系,首先提取出相关特征,如同质性、微网络结构、地理距离以及用户性别等,用于识别连接关系的不同类型,然后采用Log-linear模型来拟合各个特征间系数,基于这些系数对微博用户转发行为形成的内在原因进行了分析。 相似文献
7.
8.
《计算机应用与软件》2016,(5)
随着微博的爆炸式发展,微博已成为消息扩散和舆论传播的重要平台。研究微博信息的传播对市场营销、舆情管控等方面都具有重要意义。根据微博信息传播特点,结合传染病动力学原理,提出基于经典SIR(Susceptible-Infectious-Recovered)传染病模型的微博信息传播预测模型。该模型考虑了微博用户转发行为对信息传播机理的影响,构建具有微博传播特性的演化方程组。实验结果表明,该模型比SISe模型的预测误差更小,可以更准确地拟合和预测微博信息的转发数,从而预测得出微博信息的传播趋势。 相似文献
9.
10.
针对微博聚类正确率不高的问题,在研究微博数据特点的基础上,利用微博hashtag来增强向量空间模型,使用微博之间的转发关系提升聚类的准确性,并利用微博的转发、评论数以及微博发布者信息来提取聚类中的主题词。在新浪微博数据集上进行实验发现,与k-means算法和基于加权语义和贝叶斯的中文短文本增量聚类算法(ICST-WSNB)相比,基于话题标签和转发关系的微博聚类算法的准确率比k-means算法提高了18.5%,比ICST-WSNB提高了6.48%,召回率以及F-值也有了一定的提高。实验结果表明基于话题标签和转发关系的微博聚类算法能够有效地提高微博聚类的正确率,进而获取更加合适的主题词。 相似文献
11.
Pérez-Ortiz Juan Antonio Calera-Rubio Jorge Forcada Mikel L. 《Neural Processing Letters》2001,14(2):127-140
Arithmetic coding is one of the most outstanding techniques for lossless data compression. It attains its good performance with the help of a probability model which indicates at each step the probability of occurrence of each possible input symbol given the current context. The better this model, the greater the compression ratio achieved. This work analyses the use of discrete-time recurrent neural networks and their capability for predicting the next symbol in a sequence in order to implement that model. The focus of this study is on online prediction, a task much harder than the classical offline grammatical inference with neural networks. The results obtained show that recurrent neural networks have no problem when the sequences come from the output of a finite-state machine, easily giving high compression ratios. When compressing real texts, however, the dynamics of the sequences seem to be too complex to be learned online correctly by the net. 相似文献
12.
随着新型社交媒体的发展,作为传播网络舆论的重要媒介,微博已然成为挖掘民意的平台.自然语言处理技术可以从微博文本中提取有效情感信息,为网络舆情监控、预测潜在问题及产品分析等提供科学的决策依据.为了克服现有的浅层学习算法对复杂函数表示能力有限的问题,本文尝试融合深度学习的思想,提出基于Word2Vec和针对长短时记忆网络改进的循环神经网络的方法进行中文微博情感分析.在两万多条中文标注语料上进行训练实验,实验数据与SVM、RNN、CNN作对比,对比结果证明,本文提出的情感分析模型准确率达到了91.96%,可以有效提高微博文本情感分类的正确率. 相似文献
13.
This paper presents a pattern discrimination method for electromyogram (EMG) signals for application in the field of prosthetic control. The method uses a novel recurrent neural network based on the hidden Markov model. This network includes recurrent connections, which enable modeling time series, such as EMG signals. Weight coefficients in the network can be learned using a well-known back-propagation through time algorithm. Pattern discrimination experiments were conducted to demonstrate the feasibility and performance of the proposed method. We were able to successfully discriminate forearm motions using the EMG signals, and achieved considerably high discrimination performance compared with other discrimination methods. 相似文献
14.
A fuzzy‐recurrent neural network (FRNN) has been constructed by adding some feedback connections to a feedforward fuzzy neural network (FNN). The FRNN expands the modeling ability of a FNN in order to deal with temporal problems. A basic concept of the FRNN is first to use process or expert knowledge, including appropriate fuzzy logic rules and membership functions, to construct an initial structure and to then use parameter‐learning algorithms to fine‐tune the membership functions and other parameters. Its recurrent property makes it suitable for dealing with temporal problems, such as on‐line fault diagnosis. In addition, it also provides human‐understandable meaning to the normal feedforward multilayer neural network, in which the internal units are always opaque to users. In a word, the trained FRNN has good interpreting ability and one‐step‐ahead predicting ability. To demonstrate the performance of the FRNN in diagnosis, a comparison is made with a conventional feedforward network. The efficiency of the FRNN is verified by the results. 相似文献
15.
对一种递归神经网络算法的修正 总被引:1,自引:0,他引:1
本文指出了Chao-chee Ku等人提出的对角递归神经网络算法中存在的不足,并给出了修正算法,数学分析及仿真结果表明,本文所做的修正是合理的。 相似文献
16.
回归神经网络中样本特征记忆的反馈控制方法研究 总被引:1,自引:0,他引:1
分析了具有遗忘特性及信息锁存能力的状态回归神经网络的计算方法。针对多输入多输出时序样本,提出了更能反映网络短时记忆能力以及时序样本数据物理特性的同时刻反馈控制和计算方法。实验结果显示,该文提出的方法对时序样本的学习和记忆不但具有更高的准确性,而且不增加计算的复杂性。 相似文献
17.
针对葡萄酒品质预测模型难以建立的问题,提出一种基于模糊递归小波神经网络的葡萄酒品质预测模型。利用葡萄酒物理化学指标和品酒师打分作为模型的输入输出,采用梯度下降算法在线学习隶属函数层中心、宽度和小波函数平移因子、伸缩因子、自反馈权重因子以及输出层权值。仿真实验时,首先利用Mackey-Glass混沌时间序列进行了性能测试,然后利用UCI数据集葡萄酒品质数据对所建立的品质预测模型进行了验证。结果显示,与多层感知器、径向基函数神经网络等传统前馈神经网络相比,构建的模糊递归小波神经网络品质预测模型具有更高的预测精度,更加适合于葡萄酒的品质预测。 相似文献
18.
B. Cannas G. Celli A. Fanni F. Pilo 《Journal of Intelligent and Robotic Systems》2001,31(1-3):229-251
A general purpose implementation of the Tabu Search metaheuristic, called Universal Tabu Search, is used to optimally design a Locally Recurrent Neural Network architecture. Indeed, the design of a neural network is a tedious and time consuming trial and error operation that leads to structures whose optimality is not guaranteed. In this paper, the problem of choosing the number of hidden neurons and the number of taps and delays in the FIR and IIR network synapses is formalised as an optimisation problem whose cost function to be minimised is the network error calculated on a validation data set. The performances of the proposed approach have been tested on the design problem of a Neural Network controller of a Custom Power protection device. 相似文献
19.
深度神经网络(deep neural networks, DNNs)及其学习算法,作为成功的大数据分析方法,已为学术界和工业界所熟知.与传统方法相比,深度学习方法以数据驱动、能自动地从数据中提取特征(知识),对于分析非结构化、模式不明多变、跨领域的大数据具有显著优势.目前,在大数据分析中使用的深度神经网络主要是前馈神经网络(feedforward neural networks, FNNs),这种网络擅长提取静态数据的相关关系,适用于基于分类的数据应用场景.但是受到自身结构本质的限制,它提取数据时序特征的能力有限.无限深度神经网络(infinite deep neural networks)是一种具有反馈连接的回复式神经网络(recurrent neural networks, RNNs),本质上是一个动力学系统,网络状态随时间演化是这种网络的本质属性,它耦合了“时间参数”,更加适用于提取数据的时序特征,从而进行大数据的预测.将这种网络的反馈结构在时间维度展开,随着时间的运行,这种网络可以“无限深”,故称之为无限深度神经网络.重点介绍这种网络的拓扑结构和若干学习算法及其在语音识别和图像理解领域的成功实例. 相似文献