首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the reuse of a waste salt from an electrorefining process of a spent oxide fuel, a separation of rare earth elements by an oxidative precipitation in a LiCl-KCl molten salt was tested without using precipitate agents. From the results obtained from the thermochemical calculations by HSC Chemistry software, the most stable rare earth compounds in the oxygen-used rare earth chlorides system were oxychlorides (EuOCl, NdOCl, PrOCl) and oxides (CeO2, PrO2), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides and oxides were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes: small cubic (oxide) and large plate-like (tetragonal) structures. The conversion efficiencies of the rare earth elements to their molten salt-insoluble precipitates were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of 650 °C of the molten salt temperature and 420 min of the sparging time, the final conversion efficiencies were over 99.9% for all the investigated rare earth chlorides.  相似文献   

2.
This study assesses the feasibility of designing a Molten Salt Reactor (MSR) using the salt mixture of LiF (15 mol%), NaF (58 mol%) and BeF2 (27 mol%) to be critical when fuelled with TRU from LWR spent fuel without exceeding the actinides solubility limit and while extracting fission products at realistic rates. The first part of the study investigated the graphite-to-MS volume ratio on the neutron balance, transmutation characteristics and graphite lifetime. It is found that a core without graphite moderator is the preferred design option; it offers the best neutron balance, most compact design and alleviated graphite lifetime problem. The second part of the study investigated sensitivity of the epithermal spectrum core to the feed composition, power density, fission products residence time and actinides loss fraction. It is found that the transmutation effectiveness improves with increasing power density and that the shorter the LWR spent fuel cooling time is, the better becomes the MSR neutron balance. The optimal MSR design offers a remarkably high transmutation capability – fissioning of as high as 99.8% of the TRU fed. The transmutation capability of the MSR is also rated in terms of final waste radiotoxicity, decay heat, spontaneous fission neutrons emission, fissile and 237Np inventory.  相似文献   

3.
Low-pressure distillation has been proposed as a suitable technique for the recovery of carrier salt from molten salt reactor spent fuel. A closed-chamber disti...  相似文献   

4.
《Annals of Nuclear Energy》2005,32(4):417-433
In our earlier paper the target optimization of an electron–neutron (e–n) converter based molten salt ADS concept (MSENC) was presented. In this paper the burnup in this molten salt ADS is investigated. The system is continuously fueled with TRUs obtained from spent nuclear fuel by means of pyrochemical separation, while fission products are continuously filtered out. Effect of MSENC operation on transuranium consumption, mass reduction and radiotoxicity is considered. It seems that while the amount of plutonium is reduced significantly, the higher actinides will build up, which results that radiotoxicity of nuclear waste will not be reduced considerably.  相似文献   

5.
熔盐堆作为第四代核能系统堆型之一,液态燃料形态的特点使其可以实现在线处理和在线添料。为了提高中子经济性可以利用在线处理的氦鼓泡法,将氦气通入反应堆一回路,去除堆芯内的裂变气体(如Xe、Kr)。基于钍基熔盐液态堆(Thorium Molten Salt Reactor-Liquid Fuel1,TMSR-LF1)概念设计,结合熔盐实验堆(Molten Salt Reactor Experiment,MSRE)氙毒模型,分析了鼓泡法去除氙毒中~(135)Xe扩散规律和去除效率对氙毒的影响,并给出了对应的初始有效增殖因子的变化规律。分析结果表明,虽然存在~(135)Xe会大量向石墨扩散的可能性,但是鼓泡法仍然可以有效去除TMSR-LF1堆芯内的~(135)Xe,减小堆芯毒性,提高反应性。  相似文献   

6.
The possibility of creating a multi-component nuclear power system in which, alongside thermal and fast reactors, molten salt burner reactors, for incineration of weapons-grade plutonium, some minor actinides and transmutation of some fission products will be presented. This work aims to review the status of molten salt reactor technology and innovative non-aqueous chemical processing methods, to indicate the importance of the remaining uncertainties, to identify the additional work needed, and to evaluate the probability of success in obtaining improved safety characteristics for a new concept of molten salt-burner reactor with an external neutron source.  相似文献   

7.
The newly nuclide separation system from spent nuclear fuels is proposed. The proposed separation system consists of recovery of nuclear fuel elements, separation of trivalent minor actinide from lanthanide, and separation of some fission products such as strontium. This separation system is based on the chromatographic technique using the tertiary pyridine resin. Separation experiments using mixed oxide fuel highly irradiated in fast reactor “Joyo” were carried out. The recovery of plutonium, the separation of minor actinide from fission products including lanthanides, and the separation of americium and curium were achieved. The recovery or removal of platinum group elements and technetium was also investigated, and the removal of these elements prior to the main reprocessing process has been proposed.  相似文献   

8.
Radioactive fluoride wastes are generated during the operation of molten salt reactors(MSRs) and reprocessing of their spent fuel.Immobilization of these wastes in borosilicate glass is not feasible because of the very low solubility of fluorides in this host.Alternative candidates are thus an active topic of research including phosphatebased glasses,crystalline ceramics,and hybrid glass-ceramic systems.In this study,mixed fluorides were employed as simulated MSRs waste and incorporated into sodium aluminophosphate glass to obtain phosphate-based waste form.These waste forms were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.Leaching tests were performed in deionized water using the product consistency test A method.This study demonstrates that up to 20 mol%of simulated radioactive waste can be introduced into the NaA1 P glass matrix,and the chemical durability is much better than that of borosilicate.The addition of Fe_2O_3 in the NaAlP glass matrix results in increases of the chemical durability at the expense of fluoride loading(to 6.4 mol%).Phosphate glass vitrification of radioactive waste containing fluorides is a potential method to treat and dispose of MSR wastes.  相似文献   

9.
利用氧化物沉淀-减压蒸馏耦合法研究FLiNaK熔盐体系中氟化物的蒸发行为及稀土Nd的分离。高温下氧化物CaO与稀土氟化物NdF_3反应形成难溶于熔盐的稀土氧化物,通过减压蒸馏蒸发、收集冷凝FLiNaK熔盐,提高稀土与熔盐的分离度,促进熔盐的回收利用。研究表明,含有NdF_3(w=3%)的FLiNaK熔盐中加入CaO,730°C下反应6 h,n(NdF_3):n(CaO)=1:3时NdF_3的转化率达95%。X射线衍射(X-ray Diffraction,XRD)分析表明生成的Nd_2O_3主要沉淀在熔盐的底部。经730°C高温沉淀、930°C熔盐蒸馏,冷凝盐中稀土Nd的去污因子达9.4′105,而未经沉淀处理Nd的去污因子为3.1′104,表明高温沉淀蒸馏耦合法使稀土NdF_3转化为氧化物Nd_2O_3,显著增大稀土与FLiNaK的分离度,提高收集盐的纯度。  相似文献   

10.
A pyrometallurgical partitioning process is being developed for recovering minor actinides from high-level liquid waste resulting from PUREX reprocessing. Since the high-level liquid waste consists of concentrated raffinate, concentrated alkaline waste and insoluble residues, the various elements in the waste must be converted to chlorides before they can be sent on to the pyrometallurgical partitioning process. The conversion to chlorides is done by a combination of denitration and chlorination. The mass balance of these processes was measured in the present study using simulated high-level liquid waste. The results indicate that almost all of the alkali elements and Re, substituting for Tc, and significant amounts of Se, Cr, and Mo were separated by denitration, and that Cr, Fe, Zr, Mo, and Te were separated by chlorination. The remaining noble metals, Ni, U, and alkaline-earth and rare-earth elements were efficiently converted to chlorides, which were then supplied to the reductive extraction test using a molten salt/liquid-Cd system to demonstrate that the obtained chlorides are appropriate for processing by pyrometallurgical partitioning. In further reduction, noble metals and Ni were reductively extracted into the liquid-Cd phase, and the rare-earth elements and U into the liquid-Cd phase by adding Li reductant. These elements were completely separated from the alkaline-earth elements remaining in the chloride phase.  相似文献   

11.
Pyro-metallurgical technology is one of potential devices for future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required for the fuel cycle. In order to satisfy the requirement, actinides recycling applicable to LWR and FBR cycles by pyro-process has been developed since more than ten years in CRIEPI. The main technology is electrorefining for U and Pu separation and reductive-extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology on separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance on the geologic disposal.

The main achievements are summarized as follows:

• -|The elemental technologies, such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification, have been developed successfully with lots of experiments

• -|The fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining have been demonstrated by engineering scale facility in Argonne National Laboratory by using spent fuels and in CRIEPI by uranium tests.

• -|Single element tests, using actinides, showed the Li reduction to be technically feasible, remaining the subjects of technical feasibility on multi-elements system and on effective recycle of Li by electrolysis of Li2O.

• -|Concerning on the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has been also established through uranium tests.

• -|It is confirmed that more than 99% of TRU nuclides can be recovered from the high level liquid waste by TRU tests

• -|Through these studies, the process flow sheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established.

The subjects to be emphasized for further development are classified into three categories, that is, process development (demonstration), technology for engineering development, and supplemental technology.

The metal fuel FBR has a high potential for recycling actinides by integration with pyro-reprocessing. Alloys of U-Pu-Zr with minor actinides are investigated from points of fuel properties. The miscibility and other characteristics suggest that the maximum content up to ca. 5 wt% of minor actinides is allowable in the matrix. Nine pins of metal fuel including minor actinides are ready for irradiation at Phenix fast reactor.  相似文献   


12.
Spent metallic nuclear fuel is being treated in a pyrometallurgical process that includes electrorefining the uranium metal in molten eutectic LiCl-KCl as the supporting electrolyte. We report a model for determining the density of the molten salt. Material balances account for the net mass of salt and for the mass of actinides present. It was necessary to know the molten salt density, but difficult to measure. It was also decided to model the salt density for the initial treatment operations. The model assumes that volumes are additive for the ideal molten salt solution as a starting point; subsequently, a correction factor for the lanthanides and actinides was developed. After applying the correction factor, the percent difference between the net salt mass in the electrorefiner and the resulting modeled salt mass decreased from more than 4.0% to approximately 0.1%. As a result, there is no need to measure the salt density at 500 °C for inventory operations; the model for the salt density is found to be accurate.  相似文献   

13.
The removal of fission product elements from molten salt wastes arising from pyrochemical reprocessing of spent nuclear fuels has been investigated. The experiments were conducted in LiCl-KCl eutectic at 550 °C and NaCl-KCl equimolar mixture at 750 °C. The behavior of the following individual elements was investigated: Cs, Mg, Sr, Ba, lanthanides (La to Dy), Zr, Cr, Mo, Mn, Re (to simulate Tc), Fe, Ru, Ni, Cd, Bi and Te. Lithium and sodium phosphates were used as precipitants. The efficiency of the process and the composition of the solid phases formed depend on the melt composition. The distribution coefficients of these elements between chloride melts and precipitates were determined. Some volatile chlorides were produced and rhenium metal was formed by disproportionation. Lithium-free melts favor formation of double phosphates. Some experiments in melts containing several added fission product elements were also conducted to study possible co-precipitation reactions. Rare earth elements and zirconium can be removed from both the systems studied, but alkaline earth metal fission product elements (Sr and Ba) form precipitates only in NaCl-KCl based melts. Essentially the reverse behavior was found with magnesium. Some metals form oxide rather than phosphate precipitates and the behavior of certain elements is solvent dependent. Caesium cannot be removed completely from chloride melts by a phosphate precipitation technique.  相似文献   

14.
Cs的同位素是核裂变的主要产物之一,在熔盐反应堆液态燃料盐中以Cs F的化学形态存在,定期从燃料盐中除去或减少其含量将有助于提高反应堆的中子经济性。本文用FLi Na K熔盐模拟熔盐堆载体盐FLi Be体系,研究了Cs F在不同蒸发条件下的蒸发行为,并尝试进行了减压蒸馏和金属Li还原蒸发技术分离Cs F的实验研究。研究表明,在5 Pa蒸馏压力下,Cs F的蒸发量随温度呈线性上升趋势,780oC时Cs F的含量由1%降到0.14%,分离率达86%,但此时载体盐的蒸发量达9.5%;在常压、700oC条件下,熔盐中Cs F的蒸发比例随还原剂Li的添加量而提高,当添加的金属Li的摩尔浓度与Cs F为120:1时,Cs F分离率达91%。研究结果为了解Cs F在氟盐体系中的蒸发行为和建立可行的分离方法提供基础实验依据。  相似文献   

15.
The effects of air on the corrosion of Hastelloy-N alloys in molten salt coolant containing fission product elements were investigated to determine the safety of structural materials in high-temperature reactors cooled with fluoride salt. Corrosion tests of Hastelloy-N in the molten fluoride salt FLiNaK in an alumina crucible and a graphite crucible under argon gas or air were performed at 773–923 K for 100 h. The depth of corrosive attack, as well as the extent of chromium and molybdenum depletion, increased with increasing temperature. The extent of Hastelloy-N corrosion in molten salt under air was significantly greater than under argon gas. The effect of adding the impurity cesium iodide to molten salt containing nuclear waste fuel on the corrosion behavior was negligible.  相似文献   

16.
Under the terms of guideline 1 of the 1991 law passed by the French Parliament concerning the future of radioactive waste, we are looking for an effective solution for in-core incineration of waste. After a brief presentation of the various solutions examined by the scientific community, we will determine which parameters need to be optimised for an incinerator reactor. A permanently reprocessed, highly thermalised spectrum molten salt reactor meets these requirements. We will initially present an electricity generating version of this type of reactor, which produces very little long-lived waste using a uranium or thorium support. We will then examine the possibility of incinerating the transuranium elements produced by pressurised water reactors (PWR). Finally, we will show how to produce a thorium support reactor, generating its own fissile uranium by means of a under-moderated fertile zone around the periphery of the core.  相似文献   

17.
在熔盐堆燃料干法处理流程中,处理设备面临着严重的材质腐蚀问题。熔盐冷冻壁技术被视为保护相关设备耐受化学腐蚀的有效方法,而冷冻壁厚度的稳定控制是干法处理流程应用冷冻壁技术实现处理工艺目的的关键。基于自行研制的冷冻壁实验装置,模拟了干法处理中熔盐冷冻壁的应用工况,考察了导热油进口温度、熔盐初始温度、加热器功率、冷冻壁初始厚度对冷冻壁厚度变化的影响,得到了各个因素的影响规律,并总结了最佳的应用工艺条件。利用热流量的变化分析了冷冻壁厚度变化的原因:热流量越大,冷冻壁厚度减小量越大,达到平衡时,热流量越大,冷冻壁平衡厚度越小。通过实验数据拟合得到了线热流密度与冷冻壁平衡厚度的关系式,平均相对误差11.2%。  相似文献   

18.
Chromatographic separation of trivalent actinides (Am, Cm and Cf) was performed by using a tertiary pyridine resin embedded in silica beads with methanolic nitric acid solutions. The trivalent actinides were eluted from the resin column in the reverse order of atomic numbers (Cf-Cm-Am). Higher concentration of methanol in the mixed solution accelerated both the adsorption of these elements on the resin and the separability for these elements. Americium was clearly separated from Cm and Cf by using a 1 cm-ø × 10 cm-height column with a 60vol% of methanol/40 vol% of concentrated nitric acid mixed solution at ambient temperature.  相似文献   

19.
Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16–20 November 2003]. The molten salt fuel is a ternary NaF–LiF–BeF2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF3, etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP’ 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as to describe the molten salt reactors. For the adaptation to molten salt reactor, a complete equation of state (EOS) for this liquid fuel had to be developed and implemented into the SIMMER-III code. Through those simulations it was concluded that the thermal hydraulic behaviour appeared to be very important in molten salt reactors concerning design, operation and safety. A flow distribution plate design was found effective to optimize the flow pattern in the core region. Further investigations are under way to obtain optimal flow fields without exceeding design limits.  相似文献   

20.
The fluoride volatility method(FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in RD of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants.The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316 L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600 SS316 L graphite SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号