首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.  相似文献   

2.
This paper presents a novel numerical model, based on the finite element (FE) method, for the simulation of a welding process aimed to make a two‐pass V‐groove butt joint, paying attention on the prediction of residual stresses and distortions. The ‘element birth and death’ technique for the simulation of the weld filler supply has been considered within this paper. The main advancements with respect to the state of the art herein proposed concern: (i) the development of a modelling technique able to simulate the plates interaction during the welding operation when an only plate is modelled. This phenomenon is usually neglected in literature; (ii) the heat amount is supplied to the FEs as volumetric generation of the internal energy, allowing overcoming the time‐consuming calibration phase needed to use the Goldak's model, commonly adopted in literature. Predicted results showed a good agreement with experimental ones.  相似文献   

3.
This paper presents a comparison of contact and immersion waves used to measure residual stresses. The residual stresses are produced due to a dissimilar welding of stainless steel (304) to carbon steel (A106). Longitudinal critically refracted (LCR) wave propagated by 2 MHz contact and immersion ultrasonic transducers is employed to measure the residual stresses. A Finite Element (FE) model of welding process, which is validated by hole-drilling method, is used to verify the ultrasonic results while an acceptable agreement is achieved. The best agreement is observed in the parent material while the maximum difference is measured in the heat affected zone (HAZ). The results show no considerable difference between using contact and immersion transducers in ultrasonic stress measurement of dissimilar joints.  相似文献   

4.
On the influence of wet underwater welding on CTOD-δ5   总被引:1,自引:0,他引:1  
The influence of wet underwater welding on the crack tip opening displacement CTOD-δ5 is investigated in this paper. The welding process is numerically simulated. The instationary temperature field and welding residual stresses are calculated using the finite element method (FEM). The crack tip opening displacement for a sharp, stationary crack on the surface of a bead-on-plate weld under bending is determined. The results for an underwater wet welded specimen and a dry welded specimen are compared. The welding residual stresses are considered in the 3D fracture mechanics FE calculation as well as the material heterogeneity due to the different material properties of weld metal, heat-affected zone and base metal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
This study attempts to predict the high cycle fatigue life of steel butt welds by numerical method. At first, FE simulation of plate butt welding is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, a nonlinear damage cumulative model for multiaxial high cycle fatigue based on continuum damage mechanics (CDM), which can incorporate the effect of welding residual stresses, is derived using FE technique. The high cycle fatigue damage model is applied to the butt welds subjected to cyclic fatigue loading to calculate the fatigue life considering the residual stresses, and the computed total fatigue life which takes into account the fatigue crack initiation and the propagation is compared with the test result. In addition, the fatigue life prediction of the welds without considering the residual stresses is implemented to investigate the influence of welding residual stresses on the fatigue performance. The FE results show that the high cycle fatigue damage model proposed in this work can predict the fatigue life of steel butt welds with high accuracy, and welding residual stresses should be taken into account in assessing the fatigue life of the welds.  相似文献   

6.
This paper presents a sequentially coupled three-dimensional (3-D) thermal, metallurgical and mechanical finite element (FE) model to simulate welding residual stresses in high strength carbon steel butt weld considering solid-state phase transformation effects. The effects of phase transformation during welding on residual stress evolution are modeled by allowing for volumetric changes and the associated changes in yield stress due to austenitic and martensitic transformations. In the FE model, phase transformation plasticity is also taken into account. Moreover, preheat and inter-pass temperature are included in the modeling process. Based on the FE model, the effects of solid-state phase transformation on welding residual stresses are investigated. The results indicate the importance of incorporating solid-state phase transformation in the simulation of welding residual stresses in high strength carbon steel butt weld.  相似文献   

7.
Stainless steel clad plate is widely used in petroleum, chemical and medicine industries due to its good corrosion resistance and high strength. But cracks are often formed in clad layer during the manufacture or service, which are often repaired by repair welding. In order to ensure the structure integrity, the effects of residual stress need to be considered. The objective of this paper is to estimate the residual stress and deformation in the repair weld of a stainless steel clad plate by finite element method. The effects of heat input and welding layer number on residual stresses and deformation have been studied. The results show that large residual stresses have been generated in the repair weld. The heat input and layer number have great effects on residual stress distribution. With the heat input and welding layer number increasing, the residual stresses are decreased. Using multiple-layer welding and higher heat input can be useful to decrease the residual stress, which provides a reference for optimizing the repair welding technology of this stainless steel clad plate.  相似文献   

8.
Although the air–arc cutting process has been widely used in the material processing engineering, little information about temperature, stress and microstructure in the plate air–arc cut is known. A three-dimensional finite element model including the material removal and the thermal effect of the arc is developed to study the temperature and stress fields of 10Ni5CrMoV steel plate during air–arc cutting process in this paper. The microstructures and micro-mechanical properties of the parts near the groove especially in heat affected zone (HAZ) are studied by experimental methods, and they also can be used as a method to verify the numerical results. Effects of stresses induced by air–arc cutting process on the initial residual stress fields of base materials are also researched. The results show that the cooling velocity in HAZ is higher than the one of the welding process for the same base material, and the zone with high temperature is very narrow, which means that the temperature gradients near the groove are very steep during the air–arc cutting process; this special temperature field depresses multiphase transformations and coarse microstructures. The evolution of the stress during the air–arc cutting is described, and the numerical results indicate that the characteristics of the evolution of stresses and the residual stresses distribution in the plate in air–arc cutting process seem to be similar to the ones of the butt welding for flat plates. The influences of air–arc cutting process on initial stress fields present two aspects: thermal effect and material removal effect, and the former plays a primary role. Both numerical temperature and stress fields are compared with the experimental ones. It is very important for researchers to clarify the temperatures, stresses and microstructures in the plate during air–arc cutting process, and understand fully the mechanism of influences of air–arc cutting on the plate; it is also very valuable for engineering application of the air–arc cutting process.  相似文献   

9.
In this work laser‐welded tube‐tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading. In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole‐drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as‐welded and relieved specimens.  相似文献   

10.
振动时效消除拼焊不锈钢板的残余应力   总被引:2,自引:0,他引:2  
为了消除超大不锈钢焊接底板的残余应力,研究了采用振动时效(VSR)的方法消除焊接残余应力。应用JB /T5926-91标准对振动时效工艺进行了定性的评价。通过对焊后和振动时效后底板焊缝上残余应力的对比测量,全面地、定量地了解振动时效工艺对残余应力的变化及最终的应力状况的影响,了解了VSR工艺的可行性和有效性,从而实现替代热时效工艺目标。  相似文献   

11.
This study investigates ultrasonic method in axial and hoop stress measurement through thickness of an austenitic stainless steel pipe. Longitudinal critically refracted (LCR) waves are employed to measure the welding residual stresses while outer and inner surfaces of the pipe are inspected by using different frequency range of ultrasonic transducers. The acoustoelastic constant is measured on a plate with the same material and thickness of the investigated pipe to keep the pipe intact. Welding process of the pipe is simulated by a 3D finite element (FE) model which is validated by hole-drilling method performed on 25 points. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pipe can be evaluated by combining FE and LCR method (known as FELCR method).  相似文献   

12.
This paper uses a 3D thermo-mechanical finite element analysis to evaluate welding residual stresses in austenitic stainless steel plates of AISI 304L. The finite element model has been verified by the hole drilling method. The validated finite element (FE) model is then compared with the ultrasonic stress measurement based on acoustoelasticity. This technique uses longitudinal critically refracted (LCR) waves that travel parallel to the surface within an effective depth. The residual stresses through the thickness of plates are evaluated by four different series (1 MHz, 2 MHz, 4 MHz and 5 MHz) of transducers. By combining FE and LCR method (known as FELCR method) a 3D distribution of residual stress for the entire of the welded plate is presented. To find the acoustoelastic constant of the heat affected zone (HAZ), a metallographic investigation is done to reproduce HAZ microstructure in a tensile test sample. It has been shown that the residual stresses through the thickness of stainless steel plates can be evaluated by FELCR method.  相似文献   

13.
王佳  刘玉擎  黄李骥 《工程力学》2016,33(6):242-249
为研究高强度钢的板肋加劲板焊接残余应力分布特点,该文利用切割法对板肋加劲板试件进行了应力测试研究,建立了三维实体热弹塑性有限元模型,采用单元生死和动态约束技术模拟焊缝填充和焊接热输入过程,对比分析了高强度钢和普通钢的应力分布特点,比较研究了母板厚度、肋板厚度、肋板间距和高度对焊接残余应力的影响。研究结果表明:板肋加劲板T型接头角焊缝的焊接顺序与残余应力的分布不相关;高强度钢非焊接区域残余压应力小于普通钢;板件厚度和肋板高度是影响高强度钢的板肋加劲板焊接残余应力的主要因素。  相似文献   

14.
为研究焊接工艺参数对Q345钢平板焊接残余应力的影响,对采用药芯焊丝半自动焊接后的8 mm厚平板焊缝结构进行仿真模拟,在经验数值范围内设置不同的焊接工艺参数值,分析平板在横向和厚度方向的焊接残余应力分布情况。研究结果表明:横向的最大焊接残余应力分布在热影响区,且随着焊接速度的增大和焊接层间温度的降低而降低;沿厚度方向的最大焊接残余应力为115.92 MPa,位于平板中间层,随着焊接速度的增大而先减小后增大;平板焊接在横向的残余应力远大于厚度方向的应力。根据焊接残余应力的变化情况,运用二元回归分析法对横向和厚度方向的最大焊接残余应力进行函数拟合与检验,并开展多因素拟合模型的分析,得到焊接速度和焊接层间温度对焊接残余应力的综合影响规律。通过研究残余应力的变化趋势可选定焊接残余应力最小时的工艺参数范围,实现焊接工艺参数优化。  相似文献   

15.
This article investigates the nondestructive capability of ultrasonic waves in residual stress evaluation of austenitic stainless steel plates (AISI 304L). Longitudinal critically refracted (L CR ) waves are employed to measure the residual stresses. Measuring the acoustoelastic constant through the tensile test is eliminated on the main investigated sample to keep it intact. Another welded plate with the same welding specification, geometry, thickness, and the same material is used to extract tensile test samples. To find the acoustoelastic constant of the heat affected zone (HAZ), a metallographic investigation is done to produce microstructure similar to that of the HAZ in a tensile test sample. A finite element model of welding process, which is validated by hole-drilling method, is used to verify the ultrasonic results. The results show good agreement between finite element and ultrasonic stress measurements which is accomplished nondestructively.  相似文献   

16.
Abstract

The aim of this study was to verify the mechanism of parallel heat welding (PHW) and to investigate the thermal and residual stresses due to welding. In this study, autogenous gas tungsten arc welding was used on type 304 stainless steel. Wells' one-dimensional stress distribution model was assumed to explain the behaviour of stress introduced by conventional welding (CW) and PHW processes. A step by step method proposed by Tall was applied to calculate theoretical thermal and residual stresses. Comparison between experimental and analytical results showed that the predicted results calculated using a modified Wells' model are in agreement with the experimental results, and that the elevation of equilibrium temperature during the welding process is an important mechanism for the reduction of residual stress in the PHW process. The theoretical curves of residual stress calculated for thermal cycles corresponding to CW and PHW processes show fairly good agreement with experimental results in the vicinity of the fusion zone.

MST/1552  相似文献   

17.
This study intends to characterize the residual stress relaxation in a girth-welded duplex stainless steel pipe exposed to cyclic loading. FE thermal simulation of the girth welding process is first performed to identify the weld-induced residual stresses. 3-D elastic–plastic FE analyses incorporated with the cyclic plasticity constitutive model which can describe the cyclic stress relaxation are next carried out to evaluate reconstruction of the residual stresses under cyclic mechanical loading. The results unveils that considerable reduction of the residual stresses in and around the girth weld occur even after the initial few loading cycles and degree of the stress relaxation is dependent on the magnitude of applied cyclic loading.  相似文献   

18.
A computational procedure is presented for analyzing behaviour of stresses in circumferential butt welds of carbon steel pipe subject to superimposed mechanical loading. Three-dimensional uncoupled thermo-mechanical finite element (FE) analysis method is developed in order to predict the weld residual stress states in circumferentially butt-welded steel pipe. The FE method is verified through the experimental work. Then, three-dimensional elastic–plastic FE analysis is carried out to investigate the behaviour of stresses in steel pipe circumferential welds undergoing superimposed axial tension loading using the weld residual stresses and plastic strains obtained from the thermo-mechanical FE method. The simulated results show that spatial variations of the weld residual stresses are present along the circumference and a rapid change of the residual stresses exists at the weld start/stop position, therefore three-dimensional FE analysis is essential to accurately simulate the circumferential welding of steel pipe. Moreover, when axial tension loading is applied to the circumferentially welded steel pipe, bending moment is generated at the weld area caused by the circumferential shrinkage of the weld during welding, thus affecting the axial and hoop stress evolutions in the course of mechanical loading.  相似文献   

19.
By conducting the numerical and experimental analysis, the influence of heat input on the microstructures and mechanical properties of laser welding GH4169 bolt assembly is systematically investigated. The weld formation, temperature field, and residual stress distribution during laser welding by using the finite element modeling are consistent with experimental results. The numerical simulation results show that the increase of heat input imparts lower residual stresses and higher temperature gradient. During the process of laser welding, the steepest temperature gradient and the peak residual stress arise in the fusion zone (FZ). In addition, the dissolution of γ″ and γ′ toward the fusion line increases in heat affected zone (HAZ), but only Laves phase is observed in FZ. With increasing heat input from 24 to 48 J mm−1, the ultimate tensile strength of welded joints decreases. Both the lowest microhardness values and tensile failure of GH4169 alloy laser welded joint are in FZ. Herein, it is that the relationship among the heat input, microstructures, and mechanical properties of GH4196 bolt assembly in laser welding is systematically established, which will be of guiding significance for the selection of welding parameters in aerospace.  相似文献   

20.
固化变形和残余应力给复合材料的应用带来威胁,准确的预测固化变形和残余应力可以为复合材料的结构和工艺设计提供调整依据,减小固化变形和残余应力。数值模拟方法因其简单、预测精度高而被广泛采用。本文主要介绍了复合材料固化变形和残余应力数值模拟流程中包含的热传导-固化模块、流动压实模块和应力变形模块。重点详述了应力变形模块中本构方程和模型-构件之间相互作用力研究的最新发展,为固化变形和残余应力预测提供方向和参考。简要讨论当前复合材料固化变形和残余应力预测的主要发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号