首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finite element simulation is employed to analyse the behaviour of clamped sandwich panels comprising equal thicknesses mild steel plates sandwiching an aluminium honeycomb core when subject to blast loadings. Pressure-time histories representative of blast loadings are applied to the front plate of the sandwich panel. The FE model is verified using the experimental test results for uniform and localised blast loading in the presence of a honeycomb core and with only an air gap between the sandwich plates. It is observed that for the particular core material, the load transfer to the back plate of the panel depends on the load intensity, core thickness and flexibility of the sandwich panels.  相似文献   

2.
Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid-structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.  相似文献   

3.
为研究铝合金蜂窝夹层板水下爆炸冲击波载荷作用的动态响应及抗冲击性能,利用非药式水下爆炸冲击波加载装置对气背固支5A06铝合金夹层板及具有相同面密度的单层板进行水下冲击波加载试验。利用高速相机结合三维数字散斑技术(DIC)对夹层板后面板动态响应进行实时测量,获得夹层板气背面受水下冲击波作用的动态响应历程及变形毁伤模式,比较分析铝合金蜂窝夹层板抗冲击防护性能。结果表明,较相同面密度的单层板,蜂窝夹层板受水下冲击波载荷作用的芯层压缩能有效减少气背面板的塑性变形,提高夹层结构整体抗冲击性能。  相似文献   

4.
Abstract

Failures of honeycomb sandwich plates are analyzed using experiments and three-dimensional (3D) finite element simulations to understand the failure mechanism. Meanwhile, correlations of the critical load and various physical parameters (e.g., height and thickness of the core) are investigated. The results demonstrated that the core height and skin thickness have significant effects on the compressed load buckling of the honeycomb sandwich plates, the core density is a sub-critical sensitive factor, while wall thickness and spacing of the cell, and the sandwich modulus have negligible effects. Cracking on the adhesive surface is the dominant factor to reduce the buckling critical load of the laminated plate, which leads to failures of sandwich plates. The ultimate failure of the sandwich panel is attributed to severe deformations that lead to local cracking of the entire cemented adhesive surface. Due to the bonding of the adhesive surface defects, the actual loads related to the core height are large enough to cause compressions with local buckling. Hence, the actual loads cannot reflect the performance of the sandwich panels. It is recommended to use panels with appropriate thicknesses below the sandwich and moderate grid density in the design.  相似文献   

5.
This paper reports on an investigation into the behaviour of circular sandwich panels with aluminium honeycomb cores subjected to air blast loading. Explosive tests were performed on sandwich panels consisting of mild steel face plates and aluminium honeycomb cores. The loading was generated by detonating plastic explosives at a pre-determined stand-off distance. Core height and face plate thickness were varied and the results are compared with previous experiments. It was observed that the panels exhibited permanent face plate deflection and tearing, and the honeycomb core exhibited crushing and densification. It was found that increasing the core thickness delayed the onset of core densification and decreased back plate deflection. Increasing the plate thickness was also found to decrease back plate deflection, although the panels then had a substantially higher overall mass.  相似文献   

6.
Experiments on curved sandwich panels under blast loading   总被引:6,自引:0,他引:6  
In this paper curved sandwich panels with two aluminium face sheets and an aluminium foam core under air blast loadings were investigated experimentally. Specimens with two values of radius of curvature and different core/face sheet configurations were tested for three blast intensities. All the four edges of the panels were fully clamped. The experiments were carried out by a four-cable ballistic pendulum with corresponding sensors. Impulse acting on the front face of the assembly, deflection history at the centre of back face sheet, and strain history at some characteristic points on the back face were obtained. Then the deformation/failure modes of specimens were classified and analysed systematically. The experimental data show that the initial curvature of a curved sandwich panel may change the deformation/collapse mode with an extended range for bending dominated deformation, which suggests that the performance of the sandwich shell structures may exceed that of both their equivalent solid counterpart and a flat sandwich plate.  相似文献   

7.
A theoretical solution is obtained to predict the dynamic response of peripherally clamped square metallic sandwich panels with either honeycomb core or aluminium foam core under blast loading. In the theoretical analysis, the deformation of sandwich structures is separated into three phases, corresponding to the transfer of impulse to the front face velocity, core crushing and overall structural bending/stretching, respectively. The cellular core is assumed to have a progressive crushing deformation mode in the out-of-plane direction, with a dynamically enhanced plateau stress (for honeycombs). The in-plane strength of the cellular core is assumed unaffected by the out-of-plane compression. By adopting an energy dissipation rate balance approach developed by earlier researchers for monolithic square plates, but incorporating a newly developed yield condition for the sandwich panels in terms of bending moment and membrane force, “upper” and “lower” bounds are obtained for the maximum permanent deflections and response time. Finally, comparative studies are carried out to investigate: (1) influence of the change in the in-plane strength of the core after the out-of-plane compression; (2) performances of a square monolith panel and a square sandwich panel with the same mass per unit area; and (3) analytical models of sandwich beams and circular and square sandwich plates.  相似文献   

8.
This paper reports on experimental and numerical investigations into the response of flexible sandwich-type panels when subjected to blast loading. The response of sandwich-type panels with steel plates and polystyrene cores are compared to panels with steel face plates and aluminium honeycomb cores. Panels are loaded by detonating plastic explosive discs in close proximity to the front face of the panel. The numerical model is used to explain the stress attenuation and enhancement of the panels with different cores when subjected to blast induced dynamic loading. The permanent deflection of the back plate is determined by the velocity attenuation properties (and hence the transmitted stress pulse) of the core. Core efficiency in terms of energy absorption is an important factor for thicker cores. For panels of comparable mass, those with aluminium honeycomb cores perform “better” than those with polystyrene cores.  相似文献   

9.
Metallic sandwich panels are more effective at resisting underwater blast than monolithic plates at equivalent mass/area. The present assessment of this benefit is based on a recent experimental study of the water blast loading of a sandwich panel with a multilayered core, using a Dyno-crusher test. The tests affirm that the transmitted pressure and impulse are significantly reduced when a solid cylinder is replaced by the sandwich panel. In order to fully understand the observations and measurements, a dynamic finite element analysis of the experiment has been conducted. The simulations reveal that the apparatus has strong influence on the measurements. Analytic representations of the test have been developed, based on a modified-Taylor fluid/structure interaction model. Good agreement with the finite element results and the measurements indicates that the analytic model has acceptable fidelity, enabling it to be used to understand trends in the response of multilayer cores to water blast.  相似文献   

10.
Development of a satellite structure with the sandwich T-joint   总被引:1,自引:0,他引:1  
In this study, a monocoque satellite structure composed of many composite sandwich panels, which consist of two carbon fiber/epoxy composite faces and an aluminum honeycomb core, was designed to reduce structural mass and to improve static and dynamic structural rigidity. To join composite sandwich panels with T-shape joints, a new I-shape side insert, which was fixed inside the composite sandwich panel edge with film adhesive, was suggested. The composite sandwich panels were assembled with bolts using the through-the-thickness insert and the I-shape side insert. The flatwise tensile and compressive tests of the composite sandwich panels were performed with respect to the bonding pressure between the composite face and the aluminum honeycomb core to achieve an optimal bonding pressure. To investigate the joint characteristics of the composite faces and the I-shape side insert, cleavage peel tests were performed with respect to the bonding thickness. Also, a finite element model of the composite sandwich T-joint with the I-shape side insert was developed from experimental results of the impulse response tests and composite sandwich T-joint static tests. From the finite element analysis, the structural reliability of the monocoque composite sandwich satellite structure was verified.  相似文献   

11.
周昊  郭锐  刘荣忠  刘涛 《复合材料学报》2019,36(5):1226-1234
基于ABAQUS有限元仿真软件,建立了不同夹芯相对密度的碳纤维增强聚合物(Carbon Fiber Reinforced Polymer,CFRP)复合材料方形蜂窝夹层结构在水中爆炸冲击波载荷作用下的仿真模型,分析了结构的变形过程、夹芯的压缩特性及结构的失效及破坏情况。数值模拟结果表明,CFRP复合材料蜂窝夹芯压缩量在前面板速度降至与后面板相同时达到最大; CFRP复合材料蜂窝夹芯的最大压缩量随着初始压力的增大呈先缓慢增大后快速增大的趋势,其增大趋势在夹芯接近完全压缩时又趋于缓慢; CFRP复合材料夹层结构失效随夹芯相对密度和初始压力的变化呈现不同的模式,且其防护性能优于等重的层合结构。研究结果可以为复合材料夹层结构在水中冲击波载荷防护中的应用提供参考。   相似文献   

12.
The underwater blast response of free-standing sandwich plates with a square honeycomb core and a corrugated core has been measured. The total momentum imparted to the sandwich plate and the degree of core compaction are measured as a function of (i) core strength, (ii) mass of the front face sheet (that is, the wet face) and (iii) time constant of the blast pulse. Finite element calculations are performed in order to analyse the phases of fluid–structure interaction. The choice of core topology has a strong influence upon the dynamic compressive strength and upon the degree of core compression, but has only a minor effect upon the total momentum imparted to the sandwich. For both topologies, a reduction in the mass of the front (wet) face reduces the imparted momentum, but at the expense of increased core compression. Conversely, an increase in the time constant of the blast pulse results in lower core compression, but the performance advantage over a monolithic plate in terms of imparted momentum is reduced. The sandwich panel results are compared with analytical results for monolithic plates of mass equal to that of (i) the sandwich panel and (ii) the front face alone. (Case (i) represents a rigid core while (ii) represents a core of negligible strength.) For most conditions considered, the sandwich results lie between these limits reflecting the coupled nature of core deformation and fluid–structure interaction.  相似文献   

13.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

14.
陈峰  袁一彬  刘洋  孙学超 《包装工程》2024,45(9):250-260
目的 以钎焊高温合金蜂窝夹层板为研究对象,分析其在弹丸高速冲击作用下的力学性能。方法 采用轻气炮冲击加载试验结合有限元模拟,对蜂窝夹层板开展不同冲击强度下的动态响应和失效研究。开展含高速冲击损伤的蜂窝夹层板侧压试验,研究损伤模式对剩余强度的影响。结果 冲击强度对夹层板的失效过程和失效模式有着明显的影响,当冲击条件不足以使得迎弹面发生侵彻时,夹层板失效为表面压痕损伤;随着冲击强度的提高,出现不同程度的局部芯层压缩;当冲击强度大于临界值时,迎/背弹面陆续被侵彻,夹层板出现侵入损伤及贯穿损伤。结论 高速冲击损伤使得蜂窝夹层板的侧压失效模式,由理想塑性屈曲转变为局部失稳,侧压极限载荷大幅降低。  相似文献   

15.
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Rayleigh-Ritz minium energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along the unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has a much higher buckling strength than one having monolithic face sheets.  相似文献   

16.
为研究等腰梯形蜂窝芯玻璃钢夹芯板面内压缩破坏机制, 利用材料试验机对夹芯板面内压缩性能进行了试验测试, 并开展了模拟研究。结果表明: 夹芯板的面内压缩破坏方式主要有面板折断、夹芯板屈曲失稳和夹芯板中面板与蜂窝芯脱粘3种类型。面板为夹芯板面内压缩的主要承载构件, 蜂窝芯对面板起到固支作用。面板结构参数与材料参数为影响夹芯板面内压缩抗压强度与抗压刚度主要因素, 多数蜂窝芯的结构参数与材料参数对夹芯板面内压缩抗压强度的影响微弱, 而个别蜂窝芯的结构参数对夹芯板面内压缩抗压刚度的影响比较显著。夹芯板体积一定时, 随着蜂窝芯胞体单元数量的增加, 夹芯板面内压缩的抗压强度与抗压刚度逐渐增大。   相似文献   

17.
The nonlinear dynamic behavior of simply supported tapered sandwich plates subjected to air blast loading is investigated theoretically and numerically. The plate is supposed to have both tapered core and tapered laminated face sheets and be subjected to uniform air blast load. The theory is based on a sandwich plate theory, which includes von Kármán large deformation effects, in-plane stiffnesses, inertias and shear deformations. The sandwich plate theory for plates with constant thickness which have one-layered face sheets found in the literature is developed to analyze the tapered sandwich plates with multi-layered face sheets. The equations of motion are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations. The Galerkin method is used to obtain the nonlinear differential equations in the time domain. The finite difference method is applied to solve the system of coupled nonlinear equations. The tapered sandwich plate subjected to air blast load is also modelled by using the finite element method. The displacement–time and strain–time histories are obtained. The theoretical results are compared with finite element results and are found to be in an agreement.  相似文献   

18.
开展明胶鸟弹撞击复合材料蜂窝夹芯板试验,研究夹芯结构在软体高速冲击下的损伤形式,分析相关因素对结构动态响应结果的影响。通过CT扫描对复合材料蜂窝夹芯板内部进行检测可知,面板出现分层、基体开裂、纤维断裂、凹陷、向胞内屈曲等损伤形式,蜂窝芯出现芯材压溃、与面板脱粘的损伤形式;分析复合材料蜂窝夹芯板后面板的动态变形过程及撞击中心处位移-时间数据可知,复合材料蜂窝夹芯板在撞击过程中出现由全局弯曲变形主导和局部变形主导的两种变形模式;通过对比不同工况下的复合材料蜂窝夹芯板损伤程度可知,复合材料蜂窝夹芯板损伤程度随鸟弹撞击速度的增加而增大;蜂窝芯高度为10 mm的复合材料蜂窝夹芯板较蜂窝芯高度为5 mm的复合材料蜂窝夹芯板的损伤程度大;初始动能较大的球形鸟弹较圆柱形鸟弹对复合材料蜂窝夹芯板造成的冲击损伤程度更大。   相似文献   

19.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

20.
Investigation on the square cell honeycomb structures under axial loading   总被引:1,自引:0,他引:1  
To investigate into the collapse of a sandwich panel or beam with a square cell honeycomb, the novel plate model and beam model are developed according to the cross-sectional symmetry of the cell. The treble series solution of buckling mode is presented, and the formulas of critical compressive stress on skins are derived. The honeycomb sandwich panels are classified as thin, medium and thick plates based on their failure forms. It is found that the different kinds of cells have different buckling modes and different parameter governing equations. A new iterative optimization design method for a square honeycomb sandwich panel is developed and the curves of critical compressive stresses with geometrical parameters are provided in details. Finally, the 3D finite element numeric simulations have validated the formulas presented by this paper. Our study reveals some mechanical characteristics of the square honeycomb sandwich structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号