首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the evaluation of the local damage of concrete plates by the impact of high-velocity rigid projectiles. A new launching system of mushroom-shaped projectiles has been developed. Impact tests for concrete plates have been conducted by using the system to examine failure modes of the local damage of concrete plates. The damage or failure behavior has been discussed on the basis of the failure process captured by a high speed video camera and the strain histories obtained by strain gauges on the concrete plate. Numerical simulations have been also carried out in order to explain the mechanism of the local damage observed by the experiment. A reasonable numerical model has been discussed in terms of a constitutive model and strain rate effect of concrete material. Mechanism of the local damage of concrete plates has been illustrated schematically.  相似文献   

2.
Fiber-reinforced polymer (FRP) composite wraps have been established as an effective method for rehabilitation and strengthening of concrete structures. They are being increasingly used as an alternative to steel for reinforcing and strengthening of concrete structures. This paper presents the experimental and analytical results of the influence of concrete surface treatment and the type of FRP sheets on the bonding strength of concrete-FRP sheet. The FRP sheets were bonded to concrete beams in two opposite sides using an epoxy resin. Variables included the type of fiber (C1, C5, and GE) and the surface treatment (water jet and sanding). With changing the surface treatment of concrete surface preparation and the type of fiber sheets, the bonding strength, bonding load–strain response and failure modes were investigated. The concrete specimens with surface roughened with water jet showed much better bonding strength than those roughened with an ordinary sander. Equations for predicting the bond load failure of concrete specimens externally bonded with carbon and glass fiber sheets compared well with those of experimental.  相似文献   

3.
混杂纤维布加固钢筋混凝土梁抗弯性能试验及理论研究   总被引:7,自引:1,他引:6  
该文提出了碳/芳纶/玻璃三种纤维混杂思路,高强、高弹模碳纤维提高承载能力,高延伸率玻璃纤维改善延性,而芳纶纤维使应力从碳纤维向玻璃纤维平稳转移。通过对11根钢筋混凝土梁的抗弯试验,研究了不同混杂方式、混杂结构、纤维布层数对梁抗弯性能的影响。结果表明:如果应力转移不平稳,混杂纤维布将与混凝土发生局部剥离,导致混杂纤维布加固效果降低;在相同纤维布层数条件下,与单一碳纤维布加固梁相比,碳/芳纶/玻璃层间混杂纤维布加固梁的初裂、屈服、峰值和极限荷载分别降低了22%、12%、12%和16%,而位移延性系数提高了20%,表明碳/芳纶/玻璃层间混杂纤维布能够显著降低单一碳纤维布的脆性。在试验研究的基础上,采用弹塑性截面分析法计算了混杂纤维布加固梁的承载力,理论计算值与试验值吻合良好。  相似文献   

4.
In the last two decades, the use of advanced composite materials such as Fiber Reinforced Polymers (FRP) in strengthening reinforced concrete (RC) structural elements has been increasing. Research and design guidelines concluded that externally bonded FRP could increase the capacity of RC elements efficiently. However, the linear stress–strain characteristics of FRP up to failure and lack of yield plateau have a negative impact on the overall ductility of the strengthened RC elements. Use of hybrid FRP laminates, which consist of a combination of either carbon and glass fibers, or glass and aramid fibers, changes the behaviour of the material to a non-linear behaviour. This paper aims to study the performance of reinforced concrete beams strengthened by hybrid FRP laminates.

This paper presents an experimental program conducted to study the behaviour of RC beams strengthened with hybrid fiber reinforced polymer (HFRP) laminates. The program consists of a total of twelve T-beams with overall dimensions equal to 460 × 300 × 3250 mm. The beams were tested under cyclic loading up to failure to examine its flexural behaviour. Different reinforcement ratios, fiber directions, locations and combinations of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) laminates were attached to the beams to determine the best strengthening scheme. Different percentages of steel reinforcement were also used. An analytical model based on the stress–strain characteristics of concrete, steel and FRP was adopted. Recommendations and design guidelines of RC beams strengthened by FRP and HFRP laminates are introduced.  相似文献   


5.
碳纤维布加固钢筋混凝土柱的破坏曲率增大系数分析   总被引:1,自引:0,他引:1  
吴波  王维俊  王帆 《工程力学》2006,23(1):130-138
编制了碳纤维布加固钢筋混凝土柱的截面弯矩-曲率关系全过程分析程序,通过对多种工况下碳纤维布加固钢筋混凝土柱的破坏曲率进行大量计算分析,较全面地探讨了截面尺寸、轴压比、碳纤维布配箍特征值、箍筋配箍特征值、纵筋配筋率、混凝土强度等参数对碳纤维布加固钢筋混凝土柱破坏曲率增大系数的影响,在此基础上给出了该增大系数的回归计算公式。研究结果表明,该增大系数随着碳纤维布配箍特征值的增大而增大,且变化最为显著;此外,大多数情况下该增大系数还随构件截面尺寸或箍筋配箍特征值的增大而减小。给出的增大系数回归计算公式较好地反映了该系数随各主要参数的变化趋势。  相似文献   

6.
High velocity impact performance of glass reinforced polyester (GRP) resin composite plates with different type of reinforcement was investigated. The projectile used was a sharp tipped (30°) conical head with total length of 30 mm and shank length of 15 mm with weight of 9.74 g. Five different types of E-glass fiber reinforcement were used, including chopped strand mat (CSM), plain weave, satin weave, unidirectional and cross-ply unidirectional fiber reinforcements. A smooth barrel gas gun was used to conduct high velocity impact tests in the velocity range of 80–160 m/s. Composite plates with size of 15 cm × 15 cm were prepared in 3 and 6 mm thickness. Results showed higher ballistic limit velocity (velocity at which samples fully penetrated the target plates with zero residual velocity) for 3 mm GRP plates with cross-ply unidirectional reinforcement followed by unidirectional reinforcement and plain weave, the plates with satin weave and CSM reinforcements were almost in same level. The thicker specimens (6 mm), plates with plain weave reinforcement showed better ballistic performance towards sharp tipped conical projectile impact, followed by cross-ply unidirectional, satin weave, unidirectional and CSM reinforced plates. Experimentally determined ballistic limit velocity for all specimens correlate well with estimated ballistic limit values obtained in full perforation tests. Damage assessment conducted on all specimens indicated fiber tension and shear failure for thin-walled and sever delamination for the thick-walled specimens as the dominant failure modes.  相似文献   

7.
以超高分子量聚乙烯(Ultra High Molecular Weight Polyethylene,UHMWPE)纤维、S-玻璃纤维、芳纶1414纤维和杂环芳纶纤维增强聚烯烃(Polyolefin,PO)和水性聚氨酯(Waterborne Polyurethane,WPU)树脂,采用热压工艺制备正交单向无纬(UD)结构复合材料装甲板;通过装甲板弹道极限速度测试,研究了纤维增强树脂基复合材料装甲板防弹性能的影响因素;通过体视显微镜观察装甲板侵彻破坏形貌,分析了纤维增强树脂基复合材料的破坏机制。结果表明:UHMWPE纤维增强PO树脂基复合材料的防弹性能与UHMWPE纤维的强度和模量呈正相关,但纤维模量对复合材料防弹性能的影响随着纤维模量的增大而逐渐变弱;在WPU树脂体系下,四种纤维的防弹性能由高到低依次是UHMWPE纤维、杂环芳纶纤维、芳纶1414纤维、S-玻璃纤维;纤维增强树脂基复合材料装甲板中纤维破坏方式有迎弹面纤维被剪切冲塞、中部被纤维拉伸变形后剪切、背弹面纤维被拉伸断裂,中部纤维拉伸变形是消耗子弹动能的主要方式。  相似文献   

8.
预应力FRP加固混凝土结构技术研究与应用   总被引:1,自引:0,他引:1  
介绍了笔者进行的预应力芳纶纤维布和碳纤维筋加固混凝土结构的一些主要研究成果,内容包括:预应力芳纶纤维布永久锚具的开发;预应力芳纶纤维布的应力松弛损失研究;预应力芳纶纤维布加固混凝土梁的受弯、受剪性能研究;温度对芳纶纤维布配套粘结材料的力学性能影响研究;体外预应力碳纤维筋局部加固混凝土梁的力学性能研究;碳纤维筋预应力粗纤维混凝土梁的抗震性能研究;预应力纤维布加固混凝土结构的工程应用等。  相似文献   

9.
Near-surface mounted (NSM) fiber reinforced polymer (FRP) has been established as an effective technique for strengthening concrete member. In preview literatures, bond failure was observed usually in the strengthened beam test for increasing flexural capacity. Bond behavior is of primary importance for the transfer of stress between the concrete and the FRP reinforcement to develop composite action. In this paper, a total of 22 tests were conducted to study the bond failure performance between NSM FRP bars and concrete besides only one test as a comparison. Failure modes, load–deflection curves, strain distribution of FRP bars, and local bond stresses at the FRP-epoxy adhesive interface from the tests were analyzed in detail. Some of the factors expected to affect bond performance were presented, namely: diameter of FRP bars, type to FRP material, concrete compressive strength and bonded length. The test results reported in this paper should be useful for further establishing local bond–slip constitute relationship and further verification of numerical simulation models, in addition to gaining a better understanding of bond failures for flexural strengthening concrete structures with NSM FRP bars.  相似文献   

10.
Externally bonded fiber reinforced polymers (FRP) has been established as an effective technique for strengthening concrete members. Other techniques, like near surface mounted (NSM) FRP bars, and steel reinforced polymers (SRP) have emerged as viable alternatives. In this study, four composite-based strengthening systems were used to provide equivalent flexural performance, namely: externally bonded CFRP sheets, NSM prefabricated CFRP strips, externally bonded SRP sheets and NSM stainless steel bars. The strengthening design was based on achieving approximately 38% increase in flexural capacity over the unstrengthened control beams. The mode of failure by design was brittle failure controlled by concrete crushing at 0.003 strain. However, the experimental program was designed to demonstrate the effectiveness of transverse anchoring reinforcement to control premature debonding failure modes and fully utilize the high strength of the composite systems. A more ductile behavior was also observed as a result of transverse strengthening and concrete confinement effects. Accordingly, an increase of approximately 50% in flexural strength is accomplished.  相似文献   

11.
为了研究火灾蔓延作用对混凝土灾后连续板力学性能影响,对4块灾后连续板进行承载力试验,研究了火灾蔓延工况、配筋率和配筋方式等对灾后板变形、混凝土和钢筋应变和破坏模式等影响规律;此外,考虑竖向剪切力影响,提出混凝土双向板拉压薄膜效应区域计算方法,建立灾后板极限承载力计算方法;采用不同理论,对灾后连续板各跨承载力进行对比分析...  相似文献   

12.
通过11根玄武岩纤维增强聚合物复合材料(BFRP)筋钢纤维高强混凝土梁的受弯性能试验,研究了钢纤维混凝土层厚度、钢纤维体积分数和BFRP筋配筋率对BFRP筋钢纤维高强混凝土梁受弯破坏形态及其承载力的影响。结果表明,BFRP筋钢纤维高强混凝土梁的破坏模式可分为受压破坏、受拉破坏和平衡破坏3种;钢纤维混凝土层厚度和钢纤维体积分数的变化对于BFRP筋钢纤维高强混凝土梁受弯承载力具有一定程度的影响,当BFRP筋配筋率为0.77%时,掺加体积分数为1.0%钢纤维的梁受弯承载力较无钢纤维梁提高了22.7%,在受拉区0.57倍截面高度内掺加1.0vol%钢纤维的梁受弯承载力达到全截面钢纤维混凝土梁受弯承载力的86.7%;增大BFRP筋配筋量可显著提高BFRP筋钢纤维高强混凝土梁的受弯承载力,BFRP筋配筋率为1.65%的试验梁受弯承载力较配筋率为0.56%的试验梁提高了39.4%。针对不同的破坏模式,提出了BFRP筋钢纤维高强混凝土梁受弯承载力和平衡配筋率的计算方法,并结合安全配筋率的概念对试验梁的破坏模式进行了预测,试验结果与分析结果吻合良好。  相似文献   

13.
Deteriorated concrete bridge decks are strengthened with external bonding technique using either steel plate or various FRPs to enhance the decreased load carrying capacity and serviceability. But the failure characteristics of bridge decks strengthened with various materials can be changed according to mechanical properties of strengthening materials or strengthening scheme as well as the strengthening amount. In this paper, strengthening effect of deck strengthened with carbon fiber sheets, glass fiber sheets or steel plates is compared. And the theoretical load carrying capacity are evaluated using yield line theory and punching shear model properly modified for the strengthened RC member. The panels strengthened with sheet type FRP materials failed more often in a ductile mode, indicating that the failure developed after the rebar yielded.  相似文献   

14.
金浏  张江兴  李冬  杜修力 《工程力学》2022,39(12):31-40
采用同时考虑混凝土材料非均质性、钢筋与混凝土之间的相互作用以及CFRP布与混凝土之间的相互作用影响的三维细观数值模拟方法,建立了CFRP布加固RC梁剪切破坏力学分析模型。在验证了细观数值方法合理性的基础上,设计并建立了12根CFRP布加固RC梁细观模型,探究相同CFRP配纤率(用布量)前提下,不同CFRP布加固方案对单调荷载作用下RC梁的剪切性能及尺寸效应的影响。结果表明:CFRP布应变分布与裂缝位置紧密相关,越靠近裂缝位置的CFRP布应变越大,提供的抗剪贡献越多;在CFRP配纤率一致的前提下,CFRP布宽度大厚度小的加固方案优于CFRP布厚度大宽度小的加固方案;CFRP布U型加固RC梁剪切强度存在尺寸效应现象,但相同CFRP配纤率下,不同CFRP布加固方案对名义抗剪强度尺寸效应的影响较小,可以忽略。  相似文献   

15.
张先炼  何晓聪  赵伦  邢保英  程强 《材料导报》2017,31(20):92-95, 100
通过自冲铆接对比试验获得接头最优铆接参数,并以此制备TA1钛合金板分别与Al5052铝合金板和H62铜合金板的异质自冲铆接头。通过静力学实验和疲劳实验研究异质接头的力学性能,并运用疲劳三参数经验公式拟合S-N曲线,最后利用扫描电镜和能谱仪进行断口分析和能谱分析进而研究接头的疲劳失效机理。结果表明,TA1-H62(STH)接头静失效载荷优于TA1-Al5052(STA)接头;且前者在低载荷下疲劳寿命优于后者,STA接头则在高载荷下优势明显。STA接头疲劳失效模式为下板断裂,STH接头则出现了两种失效模式;两板间及铆钉与上下板之间接触区域发生的剧烈微震磨损是导致疲劳裂纹萌生的主要原因。  相似文献   

16.
Near surface mounted (NSM) and externally bonded reinforcement (EBR) strengthening techniques are based on the use of carbon fiber reinforced polymer (CFRP) materials and have been used for the structural rehabilitation of concrete structures. In the present work, the efficacies of the NSM and EBR techniques for the flexural and shear strengthening of reinforced concrete beams are compared carrying out two experimental groups of tests. For the flexural strengthening, the efficacy of applying CFRP laminates according to NSM is compared to those resulting from applying CFRP laminates and wet lay-up CFRP sheets according to EBR technique. The influences of the equivalent reinforcement ratio (steel and laminates) and spacing of the laminates on the efficiency of the NSM technique for the flexural strengthening is also investigated. A numerical strategy is implemented to analyze the applicability of the FRP effective strain concept, proposed by ACI and fib in the design of FRP systems for the flexural strengthening. To assess the efficacy of the NSM technique for the shear strengthening of concrete beams, four beam series of distinct depth and longitudinal tensile steel reinforcement ratio are tested. Each series is composed of one beam without any shear reinforcement and one beam using the following shear reinforcing systems: conventional steel stirrups; strips of wet lay-up CFRP sheet of U configuration applied according to EBR technique; and laminates of CFRP embedded into vertical or inclined (45°) pre-cut slits on the concrete cover of the beam lateral faces, according to the NSM technique. Using the obtained experimental results, the performance of the analytical formulations proposed by ACI, fib and Italian guidelines is appraised.  相似文献   

17.
PBO纤维片材预应力外粘结加固集成新技术   总被引:4,自引:0,他引:4  
近年采用外部粘结纤维增强复合材料(FRP)来加固结构越来越受到许多研究开发机构和生产单位的重视。结合作者在FRP方面的研究成果和最新开发出的高强高性能的PBO纤维材料,系统地提出了一种更为有效的预应力外粘结加固方法;通过与玻璃纤维、炭素纤维和芳纶纤维等的比较,认清了新型PBO纤维材料的特性;根据既有的试验和研究成果提出了一套完整的预应力加固方法的流程,包括概念、原理和几种降低端部界面应力和新型锚固的措施;室内小型试验和室外大型试验的结果表明,PBO片材预应力技术能够提供令人满意的加固性能。  相似文献   

18.
The present research study is focused on the tensile testing and mechanical characterization of three different epoxy resins, reinforced with different concentrations of Multi-Walled Carbon Nanotubes (MWCNTs). The resins are used in crack repair of concrete members as well as in FRP sheet wrapping. The CNT reinforced polymers (CNTRP) showed a remarkable enhancement of their tensile strength (2.25 times over the host matrix) and deformation at failure (3.27 times over the host matrix). The CNTRP with the highest viscosity were used in a structural application, to impregnate glass FRP sheets to confine concrete cylinders. Then the specimens were wrapped with non-impregnated polypropylene fiber ropes (PPFR). The comparative results between specimens confined by the hybrid system, including glass sheets impregnated with epoxy resin or with resin reinforced by CNTs (CNTRP), are discussed. The specimen with CNT reinforced polymer showed 7.5% higher bearing load of the concrete until failure of the glass sheet, over the column with non-reinforced polymer. The gradual, smooth failure of the glass fiber CNTRP jacket took place at higher load levels than GFRP. Moreover, it presented half temporary load loss after the fracture of the glass sheet than the GFRP strengthened column. Finally, it indicated an earlier stabilization and regaining of the bearing load (27% earlier in terms of axial strain).  相似文献   

19.
In this research program, aligned pulp fiber sheets were used as reinforcement in cement-based matrices. Flexural testing results validate this reinforcement strategy by demonstrating that: (1) fiber sheet alignment does significantly affect mechanical behavior, indicating that fiber alignment is achieved by the production process, and (2) aligned fiber sheet composite exhibited significantly greater toughness than equivalent volumes of distributed fibers. Additional results indicate that the addition of the wet-strength additive Kymene facilitates the handling of fiber sheets, but has no effect on mechanical performance. Addition of fly ash to the fiber sheets also had no effect on composite behavior. Use of fibrillated (beaten) fibers and the introduction of perforations to the fiber sheets appeared to have no effect on flexural strength, while generally decreasing composite toughness. Increasing the fiber sheet basis weight (thickness) produced increases in toughness, with negligible changes in flexural strength. Reinforcement with multiple fiber sheets (total basis weight increasing) was shown to increase toughness, while layering with total basis weight remaining constant improved strength, but reduced toughness.  相似文献   

20.
This study presents the performance of a combined finite‐discrete element method for prediction of the structural response of reinforced concrete beams under impact loading. A combination of finite and discrete element methods enables the modelling of the concrete and the reinforcement before the concrete cracking, as well as a discontinuous nature of the concrete caused by fracture and fragmentation under high impact loading. Discretization of the concrete with triangular finite elements is coupled with one‐dimensional reinforcing bars embedded inside the concrete finite elements. The cracking in the concrete activates the joint elements used to simulate the non‐linear behavior of both concrete and reinforcement. Numerical analysis based on experimental test data has been carried out to simulate the main features of the reinforced concrete beams impacted by free‐falling drop‐weights. A high level of accuracy was demonstrated in various comparisons between the experimental tests and the analysis results, including peak displacement, crack pattern, damage level and failure modes of reinforced concrete beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号