首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
发展了一种新型3节点三边形壳单元。计算单元在局部坐标系下的节点变量时,通过采用协同转动法,预先扣除节点整体变量中的刚体转动成分,从而简化了单元的计算公式。不同于现有的其他协同转动单元,在该单元中采用了增量可以直接累加的矢量型转动变量,单元的切线刚度矩阵可以通过直接计算能量泛函对节点变量的二阶偏微分得到,且对节点变量的偏微分次序是可以互换的,因而在局部和整体坐标系下都得到了对称的单元切线刚度矩阵。为消除单元中可能出现的闭锁现象,引入了MacNeal提出的线积分法,分别用沿单元边线方向的膜应变和剪切应变构造新的假定应变场。最后,通过对几个产生了大位移与大转角变形的板壳问题进行分析,检验了该单元的可靠性、计算精度和计算效率。  相似文献   

2.
发展了一种新型协同转动9节点四边形曲壳单元。在单元中采用了矢量型转动变量,它们是节点处中性面法向矢量的两个较小分量,在增量求解过程中它们的增量是采用简单的加法直接累加的,因此在更新切线刚度矩阵时可以提高单元计算效率和简化计算过程。不同于现有的其它协同转动有限元公式,本单元的切线刚度矩阵可以通过计算应变能或能量混合泛函对节点变量的二次微分得到,且节点变量的微分次序是可以互换的,因而得到的单元切线刚度矩阵是对称的。为消除或减轻闭锁现象的不利影响,采用了降阶积分法来计算单元内力矢量和切线刚度矩阵,并采用稳定化方法消除可能出现的伪零能模态。多个算例的分析结果表明:本文发展的9节点四边形曲壳单元的可靠性、收敛性和计算精度是令人满意的。  相似文献   

3.
该文发展了一种适用于光滑壳和非光滑壳的新型协同转动4节点四边形壳单元。在单元中每个节点采用了3个平动自由度和2/3个矢量型转动自由度,每个光滑壳的节点或非光滑壳的非交界节点采用壳中性面法向矢量的2个最小分量作为矢量型转动变量,在非光滑壳中性面交界线上的节点采用3个矢量型转动变量,他们分别是节点定向矢量组中一个定向矢量的较小或最小分量和另一定向矢量的2个最小分量。在非线性增量求解过程中,这些矢量型转动变量可以采用简单的加法将增量累加到原矢量中直接进行更新,且采用了协同转动框架的单元在局部和整体坐标系下得到的切线刚度矩阵都是对称的,结构整体切线刚度矩阵可以采用一维线性存储,可节省大量的计算机存储资源和计算时间。为消除膜闭锁和剪切闭锁的不利影响,采用单点积分方案计算单元内力矢量和切线刚度矩阵,并借鉴Belytschko提出的物理稳定化零能模态控制法来消除可能出现的零能模态。通过对2个光滑壳和2个非光滑壳进行非线性分析,检验了单元的可靠性、计算效率与计算精度。  相似文献   

4.
王振  孙秦 《工程力学》2014,31(5):27-33
基于共旋列式方法发展了一种用于复合材料层合板结构几何非线性分析的简单高效的三结点三角形平板壳元。该壳元由具有面内转动自由度的广义协调膜元GT9与假设剪切应变场和假设单元转角场的广义协调厚薄通用板元TMT组合而成。为避免薄膜闭锁而采用单点积分计算与薄膜应变有关的项, 同时增加一个稳定化矩阵以消除单点积分导致的零能模式。基于层合板一阶剪切变形理论, 给出了考虑层合板具体铺层顺序的修正的横向剪切刚度, 使该壳元可用于中厚层合板结构的分析。由于共旋列式大转动小应变的假设, 共旋列式内核的几何线性的单元刚阵可仅计算一次而保存下来用于整个几何非线性求解的过程以提高计算效率。数值算例表明提出的壳元进行包括复合材料层合板结构的厚薄壳结构的几何非线性分析的精度高且效率高。  相似文献   

5.
以能量有限元方法(EFEM)建立控制方程,研究了复合材料层合梁受激励时的横向振动问题。该方法以结构中的能量密度作为变量,根据波动理论中功率流与能量密度的平衡关系建立了与傅里叶热传导方程类似的二阶偏微分方程组,通过有限元离散得到结构单元节点的能量密度矩阵形式方程。根据耦合连续平衡条件,建立耦合单元节点矩阵,从而对总矩阵方程进行组集及求解,得到结构中能量密度的分布。通过数值算例与传统有限元方法(FEM)结果做了对比,取得了较好的一致性。  相似文献   

6.
姚熊亮  叶曦 《振动与冲击》2013,32(16):158-163
本文以Donnell经典壳体振动微分方程为基础,研究微分求积单元法(DQEM)在圆柱壳稳态谐响应计算中的应用。研究结果表明:微分求积单元法可较为方便的处理多种边界条件;与有限元法相比,微分求积单元法直接面向问题的微分方程,可用较少的节点获得较高的计算精度,计算效率较高。本文结果可为微分求积单元法在结构动力响应问题求解中的应用提供参考。  相似文献   

7.
在材料不可压缩或胀/缩塑性流动情况下,传统低阶单元有体积闭锁问题。以摩尔-库仑模型为例,推导了塑性剪切应变和塑性体积应变的关系,揭示闭锁产生的原因。分析8节点等参元、Wilson非协调元、EAS单元和14节点单元的闭锁性态,表明8节点单元有严重闭锁性,Wilson非协调元也有闭锁性,EAS单元和采用降阶积分的14节点单元能克服闭锁。单元测试和方形基础的承载力计算两个数值算例证实了分析的结果,为土体三维分析中选择有效可靠的单元提供依据。  相似文献   

8.
虽然关于几何非线性分析的空间梁单元研究成果较多,但这些单元均是基于几何一致性得到的单元刚度矩阵,而基于场一致性的单元研究则较少,该文基于局部坐标系(随转坐标系)下扣除结构位移中的刚体位移得到的结构变形与结构坐标系下的总位移的关系,直接利用微分方法导出两者增量位移之间的关系,再基于场一致性原则,最终获得空间梁单元在大转动、小应变条件下的几何非线性单元切线刚度矩阵,在此基础上根据带铰梁端受力特征,导出了能考虑梁端带铰的单元切线刚度矩阵表达式,利用该文的研究成果编制了程序,对多个梁端带铰和不带铰的算例进行了空间几何非线性分析,计算结果表明这种非线性单元列式的正确性,实用价值较强。  相似文献   

9.
频率约束下复合材料圆柱壳的最轻重量设计   总被引:3,自引:0,他引:3  
用九节点剪切变形等参壳单元进行复合材料壳体分析。推导了频率对层厚变化的敏感度公式。先用POWELL法,以铺层角度为设计变量,对壳的基频进行优化,然后以层厚度为设计变量,用优化准则法进行最轻重量设计,并使基频收敛于频率约束值。  相似文献   

10.
为了判断杆件结构的有限元分析精度对节点转动刚度是否敏感,并据此调整杆件结构的离散方式,根据Zienkiewicz-Zhu后验误差估计理论,定义了正应力范数来衡量有限元的计算精度,推导了考虑节点刚度的梁单元节点力-位移公式,并以试算得到的梁/杆单元的两节点位移作为边界条件,根据半刚性节点位移-力的公式,给出了杆件需要采用梁单元、杆单元、梁+弹簧单元离散的节点刚度范围,然后通过试算确定杆件结构的合理离散方式。在ANSYS中用APDL语言实现以上算法,并以2个简单结构为例说明了该算法的流程并验证了它的正确性。  相似文献   

11.
A 9-node co-rotational quadrilateral shell element   总被引:2,自引:0,他引:2  
A new 9-node co-rotational curved quadrilateral shell element formulation is presented in this paper. Different from other existing co-rotational element formulations: (1) Additive rotational nodal variables are utilized in the present formulation, they are two well-chosen components of the mid-surface normal vector at each node, and are additive in an incremental solution procedure; (2) the internal force vector and the element tangent stiffness matrix are respectively the first derivative and the second derivative of the element strain energy with respect to the nodal variables, furthermore, all nodal variables are commutative in calculating the second derivatives, resulting in symmetric element tangent stiffness matrices in the local and global coordinate systems; (3) the element tangent stiffness matrix is updated using the total values of the nodal variables in an incremental solution procedure, making it advantageous for solving dynamic problems. Finally, several examples are solved to verify the reliability and computational efficiency of the proposed element formulation.  相似文献   

12.
A 6‐node curved triangular shell element formulation based on a co‐rotational framework is proposed to solve large‐displacement and large‐rotation problems, in which part of the rigid‐body translations and all rigid‐body rotations in the global co‐ordinate system are excluded in calculating the element strain energy. Thus, an element‐independent formulation is achieved. Besides three translational displacement variables, two components of the mid‐surface normal vector at each node are defined as vectorial rotational variables; these two additional variables render all nodal variables additive in an incremental solution procedure. To alleviate the membrane and shear locking phenomena, the membrane strains and the out‐of‐plane shear strains are replaced with assumed strains in calculating the element strain energy. The strategy used in the mixed interpolation of tensorial components approach is employed in defining the assumed strains. The internal force vector and the element tangent stiffness matrix are obtained from calculating directly the first derivative and second derivative of the element strain energy with respect to the nodal variables, respectively. Different from most other existing co‐rotational element formulations, all nodal variables in the present curved triangular shell formulation are commutative in calculating the second derivative of the strain energy; as a result, the element tangent stiffness matrix is symmetric and is updated by using the total values of the nodal variables in an incremental solution procedure. Such update procedure is advantageous in solving dynamic problems. Finally, several elastic plate and shell problems are solved to demonstrate the reliability, efficiency, and convergence of the present formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A four‐node corotational quadrilateral elastoplastic shell element is presented. The local coordinate system of the element is defined by the two bisectors of the diagonal vectors generated from the four corner nodes and their cross product. This local coordinate system rotates rigidly with the element but does not deform with the element. As a result, the element rigid‐body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, leading to the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing corotational finite‐element formulations, the resulting element tangent stiffness matrix is symmetric owing to the commutativity of the local nodal variables in calculating the second derivative of strains with respect to these variables. For elastoplastic analyses, the Maxwell–Huber–Hencky–von Mises yield criterion is employed, together with the backward‐Euler return‐mapping method, for the evaluation of the elastoplastic stress state; the consistent tangent modulus matrix is derived. To eliminate locking problems, we use the assumed strain method. Several elastic patch tests and elastoplastic plate/shell problems undergoing large deformation are solved to demonstrate the computational efficiency and accuracy of the proposed formulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A new curved quadrilateral composite shell element using vectorial rotational variables is presented. An advanced co‐rotational framework defined by the two vectors generated by the four corner nodes is employed to extract pure element deformation from large displacement/rotation problems, and thus an element‐independent formulation is obtained. The present line of formulation differs from other co‐rotational formulations in that (i) all nodal variables are additive in an incremental solution procedure, (ii) the resulting element tangent stiffness is symmetric, and (iii) is updated using the total values of the nodal variables, making solving dynamic problems highly efficient. To overcome locking problems, uniformly reduced integration is used to compute the internal force vector and the element tangent stiffness matrix. A stabilized assumed strain procedure is employed to avoid spurious zero‐energy modes. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability, computational efficiency, and accuracy of the present formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Based on a co-rotational framework, a 3-noded iso-parametric element formulation of 3D beam was presented, which was used for accurate modelling of frame structures with large displacements and large rotations. Firstly, a co-rotational framework was fixed at the internal node of the element, it translates and rotates with the node rigidly; then, vectorial rotational variables were defined, they are three smaller components of the cross-sectional principal vectors at each node, sometimes they represent different components of the cross-sectional principal vectors in incremental solution procedure so as to avoid the occurrence of ill-conditioned tangent stiffness matrix; thereafter, the internal force vector and tangent stiffness matrix in local system was derived from the strain energy of the element as its first partial derivative and second partial derivative with respect to local variables, respectively, and a symmetric tangent stiffness matrix was achieved; finally, several examples were analysed to illustrate the reliability and accuracy of this procedure.This work is supported by National Natural Science Foundation of China (50408022), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Zhejiang Province  相似文献   

16.
A principal issue in any co‐rotational approach for large displacement analysis of plates and shells is associated with the specific choice of the local reference system in relation to the current deformed element configuration. Previous approaches utilised local co‐rotational systems, which are invariant to nodal ordering, a characteristic that is deemed desirable on several fronts; however, the associated definitions of the local reference system suffered from a range of shortcomings, including undue complexity, dependence on the local element formulation and possibly an asymmetric tangent stiffness matrix. In this paper, new definitions of the local co‐rotational system are proposed for quadrilateral and triangular shell elements, which achieve the invariance characteristic to the nodal ordering in a relatively simple manner and address the aforementioned shortcomings. The proposed definitions utilise only the nodal coordinates in the deformed configuration, where two alternative definitions, namely, bisector and zero‐macrospin definitions, are presented for each of quadrilateral and triangular finite elements. In each case, the co‐rotational transformations linking the local and global element entities are presented, highlighting the simplicity of the proposed approach. Several numerical examples are finally presented to demonstrate the effectiveness and relative accuracy of the alternative definitions proposed for the local co‐rotational system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
邓继华  邵旭东 《工程力学》2013,30(10):171-177
利用共旋坐标法提出了一种预应力钢筋混凝土梁非线性分析的混合单元模型,在随转坐标系内,采用分层梁单元来模拟混凝土结构,带初应变的杆单元来模拟预应力钢筋,预应力钢筋杆元和混凝土梁元的变形协调则通过非线性刚臂来实现,通过刚臂单元两端节点位移和力的关系形成预应力钢筋对混合单元刚度矩阵的贡献,从而导出随转坐标系下预应力混凝土梁考虑材料非线性的切线刚度矩阵,几何非线性则由单元随转坐标系到结构坐标系的转换矩阵及其微分来体现,从而获得结构坐标系下混合单元模型的几何与材料双非线性切线刚度矩阵。数个钢筋混凝土及预应力钢筋混凝土梁非线性分析算例表明:所提出的混合单元模型能较好地分析预应力钢筋混凝土梁非线性性能,具有一定的实用价值。  相似文献   

18.
Dr. E. Chu 《Acta Mechanica》1986,59(1-2):103-112
Summary In finite homogeneous deformation processes, the principal triad generally rotates with respect to a material element during the deformation. The material derivative of the logarithmic strain is no longer simply related to the rate of deformation tensor, and this is exemplified herein. A mathematical procedure is provided for the analysis and the derivations vations are formulated using the co-rotational rate technique in hope, that this technique may be extended to other applications in future modeling. It will be apparent in the article that the co-rotational rate formulation provides a convenient mathematical procedure for handling problems in finite deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号