共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对实际操作中直角边零件下料利用率不高的问题,导入排样矩形的概念,将直角边零件下料问题分解为若干优化子问题,在此基础上,基于动态规划思想通过求解子问题构建全局最优解.实验表明,与传统的直角边零件板材切割相比,使用本文算法能够使板材的利用率提高30%-50%;与其他几种典型算法相比,本算法板材利用率提高显著,并且排样方案... 相似文献
4.
布局问题来源于生产实际,优秀的布局可以提高原料利用率,降低成本,提高经济效益,对许多行业有重要意义。矩形件优化排样是一类具有NP完全难度的组合优化问题。人工蚁群算法是对蚂蚁群体行为的模拟抽象,该算法具有分布计算、信息正反馈和启发式搜索等特点。本文将蚁群算法和剩余矩形法结合用于解决矩形排样问题,首先用蚁群算法将矩形件排样问题转化为一个排列问题;然后通过剩余矩形排样算法排出每一个排列所对应的排样图;最后用算法对文献[9]中的两个算例进行了验证,表明了其有效性。 相似文献
5.
LFB矩形零件排放算法具有很高的效率,文章在LFB算法的基础上,针对该算法在排放中产生的浪费矩形块问题,提出最佳吻合算法,待排零件优先从浪费矩形块中选择最佳排放位置,得到了较原LFB算法更优的排样结果,并为其它排样算法的改进提供了一种思路。 相似文献
6.
矩形件排样问题的遗传算法求解 总被引:32,自引:0,他引:32
本文研究了求解矩形件正交排样优化问题的遗传算法。同时,将矩形件正交排样问题转化为一个排列问题,提出了求一个排列所对应的排样图的下台阶算法(改进的BL算法)将下台阶算法与遗传算法相结合,用于矩形件排样问题的求解,给出了该算法的实现。用该算法对文献中的两个算例进行了求解,结果表明该算法获得了比BL算法更好的解,是一种较为行之有效的方法。 相似文献
7.
8.
目的 针对矩形件无约束2维剪切排样问题,提出一种可简化板材切割工艺的简单块占角排样方式,并构造这种排样方式的动态规划生成算法。方法 该排样方式在板材左下角按照简单块方式排样若干行若干列同种矩形件,将板材剩余部分划分为两个子板;将子板按照上述方法继续递归排样和划分,直至子板排满矩形件为止。采用动态规划确定所有可能尺寸的板材左下角排样的最优矩形件、矩形件的最优行列数和板材剩余部分的最优子板划分。运用规范尺寸排除不必要的计算。结果 将本文算法与目前常见的算法进行比较,实验结果表明本文算法计算时间合理,排样价值较高。在第1组41道基准例题中,本文算法所有例题均求出了精确解,同质块T型算法、同质块两段算法和复合条带两段算法分别有7道、5道和4道例题未求出精确解。在第2组20道基准例题中,本文算法只有1道例题未求出精确解,普通三阶段算法、同质块T型算法、同质块两段算法和匀质条带三块算法分别有18道、15道、15道和20道例题未求出精确解。在第3组50道随机例题中,本文算法、普通两段算法和同质块两段算法板材利用率分别为99.913 7%、99.862 3%和99.796 1%。在第4组31道基准例题中,本文算法所有例题均求出了精确解,普通占角排样算法有2道例题未求出精确解。结论 本文算法计算时间远小于精确算法,优化效果接近精确算法;本文算法计算时间与多种启发式算法接近,但优化效果好于多种启发式算法。 相似文献
9.
对大规模矩形件正交排样问题,提出了一种快速高效的启发式排放算法。对当前的可排放位置(水平线),用贪婪算法从未排矩形件中选择可排放于该水平线的最优矩形件组合块;根据各个排放位置与其对应的矩形件组合块的匹配程度,选择最优的可排放位置(最优水平线)优先排放。在排放时,为了便于后续排放,先将待排放位置对应的矩形件组合块从低到高进行排序,再排放。对E.Hopper提供的规模最大的一类实例进行计算,排样率都在99%以上,平均排样率达到了99.38%,平均计算时间只用了1.12秒。与相关文献最好结果进行了比较,结果表明该文算法解决大规模的矩形件排样具有高效性。 相似文献
10.
矩形件智能优化排样算法与应用 总被引:2,自引:0,他引:2
文章在分析智能优化算法的基础上,针对下料生产作业中解决排样问题的需要,提出了将遗传算法、模拟退火算法分别与"最低水平线法"排放算法结合来进行矩形件优化排料的方法,并通过实例分析比较了两种智能优化算法的应用效果. 相似文献
11.
针对矩形件下料问题,提出一种基于两段排样方式的优化下料算法。首先构造一
种约束排样算法,生成矩形件在板材上的两段排样方式。然后采用列生成算法依据矩形件剩余
需求量迭代调用上述约束排样算法生成一个虚拟下料方案,按照不产生多余矩形件原则选取虚
拟下料方案中的部分排样方式加入到实际下料方案中,更新矩形件剩余需求量;重复上述步骤
直到矩形件剩余需求量为零。采用文献中基准例题将该算法与2 种文献算法进行比较,数值实
验结果表明该算法下料利用率比2 种文献算法分别高1.61%和0.78%。 相似文献
12.
生成矩形毛坯最优两段排样方式的确定型算法 总被引:6,自引:0,他引:6
排样价值、切割工艺和计算时间是排样问题主要考虑的3个因素.文中提出一个新的基于排样模式的确定型排样算法——同质块两段排样算法,此算法适合剪冲下料工艺,在实现工艺简化的同时提高了排样价值时间比.首先通过动态规划算法生成最优同质块,然后求解一维背包问题生成块在级中的最优排样方式和级在段中的最优排样方式,最后选择两个段生成最优的两段排样方式.通过3组经典测题对该文算法进行了测试,将算法与4种著名算法进行了比较.实验结果表明,该文算法的优化结果好于以上4种著名算法,有效地提高了板材利用率,并且计算时间合理. 相似文献
13.
生成矩形毛坯最优T形排样方式的递归算法 总被引:6,自引:0,他引:6
崔耀东 《计算机辅助设计与图形学学报》2006,18(1):125-127
讨论矩形毛坯无约束两维剪切排样问题.采用由条带组成的T形排样方式,切割工艺简单.排样时用一条分界线将板材分成2段,同一段中所有条带的方向和长度都相同.一段含水平条带.另一段含竖直条带.采用递归算法确定分界线的最优位置以及每段中条带的最优组合.以便使下料利用率达到最高.采用大量随机生成的例题进行实验,结果表明该算法在计算时间和提高材料利用率2方面都较有效. 相似文献
14.
15.
研究二维板材切割下料问题,即使用最少板材切割出一定数量的若干种矩形件。
提出一种结合背包算法和线性规划算法的确定性求解算法。首先构造生成均匀条带四块排样方
式的背包算法;然后采用线性规划算法迭代调用上述背包算法,每次均根据生产成本最小原则
改善目标函数并修正各种矩形件的当前价值,按照当前价值生成新的排样方式;最后选择最优
的一组排样方式组成排样方案。采用基准测题,将该算法与著名的T 型下料算法进行比较,实
验结果表明,该算法比T 型下料算法更能节省板材,计算时间能够满足实际应用需要。 相似文献
16.
针对目前矩形件优化下料算法侧重追求高材料利用率,而对实际切割成本考虑不足的现状,提出一种既维持高材料利用率,又使下料方案具有较低切割成本的矩形件优化下料算法。算法采用SVC框架和同质条带多级规范方式求解矩形件下料问题。利用条带共边排样的路径优化设计进行切割路径长度的计算,以生产成本(材料成本与切割成本之和)为优化目标得到高材料利用率、低切割成本的下料方案,最后通过实验证实该算法的可行性与有效性。 相似文献
17.
求解2D条带矩形Packing问题的迭代启发式算法 总被引:1,自引:0,他引:1
为求解二维矩形条带装箱问题,提出了一种新颖而有效的启发式算法.算法主要包括矩形装载适应度的计算规则和树型迭代搜索规则,通过选择最高适应度的矩形来装载空间.对大量国际上公认的Benchmark问题实例的计算结果表明,相对于当前的很多著名算法,提出的算法更加有效. 相似文献
18.
同尺寸矩形毛坯排样的连分数分支定界算法 总被引:9,自引:0,他引:9
在确定同尺寸矩形毛坯最优排样方式的算法中,连分数算法的时间效率最高,但所生成排样方式的切割工艺复杂.提出连分数分支定界算法,该算法应用连分数法确定毛坯数最优值,采用贴切的上界估计方法;在搜索过程中只保留上界不小于最优值的分支,遇到下界等于最优值的分支时结束搜索.实验结果表明,该算法的时间效率和连分数算法接近,并可以有效地简化切割工艺,生成切割工艺最简单的排样方式.最后,通过实例分析说明该算法的节约材料潜力。 相似文献