首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

2.
k-tuple domination in graphs   总被引:1,自引:0,他引:1  
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear-time algorithm for the k-tuple domination problem in strongly chordal graphs, which is a subclass of chordal graphs and includes trees, block graphs, interval graphs and directed path graphs. We also prove that the k-tuple domination problem is NP-complete for split graphs (a subclass of chordal graphs) and for bipartite graphs.  相似文献   

3.
Graph G is the square of graph H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Given H it is easy to compute its square H 2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G=H 2 for some graph H of small girth. The main results are the following.
  • There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism.
  • There is a polynomial time algorithm to recognize if G=H 2 for some graph H of girth at least 6.
  • It is NP-complete to recognize if G=H 2 for some graph H of girth 4.
These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed.  相似文献   

4.
The NP-complete Power Dominating Set problem is an “electric power networks variant” of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum-size set P?V such that all vertices in V are “observed” by the vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” For treewidth being upper-bounded by a constant, we achieve a linear-time algorithm. In particular, we present a simplified linear-time algorithm for Power Dominating Set in trees. Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and it cannot be better approximated than Dominating Set.  相似文献   

5.
The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

6.
We investigate a special case of the Induced Subgraph Isomorphism problem, where both input graphs are interval graphs. We show the NP-hardness of this problem, and we prove fixed-parameter tractability of the problem with non-standard parameterization, where the parameter is the difference |V(G)|?|V(H)|, with G and H being the larger and the smaller input graph, respectively. Intuitively, we can interpret this problem as “cleaning” the graph G, regarded as a pattern containing extra vertices indicating errors, in order to obtain the graph H representing the original pattern. We also prove W[1]-hardness for the standard parameterization where the parameter is |V(H)|.  相似文献   

7.
A k-spanner of a graph G is a spanning subgraph of G in which the distance between any pair of vertices is at most k times the distance in G. We prove that for fixed k,w, the problem of deciding if a given graph has a k-spanner of treewidth w is fixed-parameter tractable on graphs of bounded degree. In particular, this implies that finding a k-spanner that is a tree (a tree k-spanner) is fixed-parameter tractable on graphs of bounded degree. In contrast, we observe that if the graph has only one vertex of unbounded degree, then Treek-Spanner is NP-complete for k?4.  相似文献   

8.
Given a graph G, a spanning subgraph H of G   and an integer λ≥2λ2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G   using colors 1,2,…1,2,, in which the color difference between vertices adjacent in H is greater than or equal to λ. The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k  . In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for the special case of graphs with fixed maximum degree at least 5 and λ≥4λ4 the problem remains NP-complete even for spanning tree backbones.  相似文献   

9.
Broersma  Kloks  Kratsch  Müller 《Algorithmica》2002,32(4):594-610
A subset A of the vertices of a graph G is an asteroidal set if for each vertex a ∈ A a connected component of G-N[a] exists containing A\backslash{a} . An asteroidal set of cardinality three is called asteriodal triple and graphs without an asteriodal triple are called AT-free . The maximum cardinality of an asteroidal set of G , denoted by \an(G) , is said to be the asteriodal number of G . We present a scheme for designing algorithms for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a polynomial (of degree asteriodal number plus a small constant) in the number of vertices and the number of minimal separators of the input graph.  相似文献   

10.
In this paper we consider the secret sharing problem on special access structures with minimal qualified subsets of size two, i.e. secret sharing on graphs. This means that the participants are the vertices of the graph and the qualified subsets are the subsets of V(G) spanning at least one edge. The information ratio of a graph G is denoted by R(G) and is defined as the ratio of the greatest size of the shares a vertex has to remember and of the size of the secret. Since the determination of the exact information ratio is a non-trivial problem even for small graphs (i.e. for V(G) = 6), every construction can be of particular interest. Let k be the maximal degree in G. In this paper we prove that R(G) = 2 ? 1/k for every graph G with the following properties: (A) every vertex has at most one neighbour of degree one; (B) vertices of degree at least 3 are not connected by an edge; (C) the girth of the graph is at least 6. We prove this by using polyhedral combinatorics arguments and the entropy method.  相似文献   

11.
A graph is H-free if it does not contain an induced subgraph isomorphic to the graph H. The graph Pk denotes a path on k vertices. The ?-Coloring problem is the problem to decide whether a graph can be colored with at most ? colors such that adjacent vertices receive different colors. We show that 4-Coloring is NP-complete for P8-free graphs. This improves a result of Le, Randerath, and Schiermeyer, who showed that 4-Coloring is NP-complete for P9-free graphs, and a result of Woeginger and Sgall, who showed that 5-Coloring is NP-complete for P8-free graphs. Additionally, we prove that the precoloring extension version of 4-Coloring is NP-complete for P7-free graphs, but that the precoloring extension version of 3-Coloring can be solved in polynomial time for (P2+P4)-free graphs, a subclass of P7-free graphs. Here P2+P4 denotes the disjoint union of a P2 and a P4. We denote the disjoint union of s copies of a P3 by sP3 and involve Ramsey numbers to prove that the precoloring extension version of 3-Coloring can be solved in polynomial time for sP3-free graphs for any fixed s. Combining our last two results with known results yields a complete complexity classification of (precoloring extension of) 3-Coloring for H-free graphs when H is a fixed graph on at most 6 vertices: the problem is polynomial-time solvable if H is a linear forest; otherwise it is NP-complete.  相似文献   

12.
A graph is König-Egerváry if the size of a minimum vertex cover equals that of a maximum matching in the graph. These graphs have been studied extensively from a graph-theoretic point of view. In this paper, we introduce and study the algorithmic complexity of finding König-Egerváry subgraphs of a given graph. In particular, given a graph G and a nonnegative integer k, we are interested in the following questions:
  1. 1.
    does there exist a set of k vertices (edges) whose deletion makes the graph König-Egerváry?
     
  2. 2.
    does there exist a set of k vertices (edges) that induce a König-Egerváry subgraph?
     
We show that these problems are NP-complete and study their complexity from the points of view of approximation and parameterized complexity. Towards this end, we first study the algorithmic complexity of Above Guarantee Vertex Cover, where one is interested in minimizing the additional number of vertices needed beyond the maximum matching size for the vertex cover. Further, while studying the parameterized complexity of the problem of deleting k vertices to obtain a König-Egerváry graph, we show a number of interesting structural results on matchings and vertex covers which could be useful in other contexts.
  相似文献   

13.
14.
Given an integer c, an edge colored graph G is said to be rainbow c-splittable if it can be decomposed into at most c vertex-disjoint monochromatic induced subgraphs of distinct colors. We provide a polynomial-time algorithm for deciding whether an edge-colored complete graph is rainbow c-splittable. For not necessarily complete graphs, we show that the problem is polynomial if c=2, whereas for c≥3 it is NP-complete even if the graph has maximum degree 2c−1. Finally, it remains NP-complete even for 2-edge colored graphs of maximum degree 7c−14.  相似文献   

15.
The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U?V, and each vertex in?U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set?V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V|, is fixed-parameter tractable as long as all vertices in?U are assigned lists of length?1, but becomes $\text {\normalfont W[1]}$ -hard if vertices in?U are assigned lists of length at most?2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.  相似文献   

16.
A colouring of a graph is ecological if every pair of vertices that have the same set of colours in their neighbourhood are coloured alike. We consider the following problem: if a graph G and an ecological colouring c of G are given, can further vertices added to G, one at a time, be coloured so that at each stage the current graph is ecologically coloured? If the answer is yes, then we say that the pair (G,c) is ecologically online extendible. By generalizing the well-known First-Fit algorithm, we are able to characterize when (G,c) is ecologically online extendible, and to show that deciding whether (G,c) is ecologically extendible can be done in polynomial time. We also describe when the extension is possible using only colours from a given finite set C. For the case where c is a colouring of G in which each vertex is coloured distinctly, we give a simple characterization of when (G,c) is ecologically online extendible using only the colours of c, and we also show that (G,c) is always online extendible using the colours of c plus one extra colour. We also study (off-line) ecological H-colourings (an H-colouring of G is a homomorphism from G to H). We study the problem of deciding whether G has an ecological H-colouring for some fixed H and give a characterization of its computational complexity in terms of the structure of H.  相似文献   

17.
The square H2 of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. Lau and Corneil [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83-102] proved that recognizing squares of split graphs is an NP-complete problem. In contrast, we show that squares of strongly chordal split graphs can be recognized in quadratic-time by giving a structural characterization of these graph class.  相似文献   

18.
In the Parameterized Connected Dominating Set problem the input consists of a graph G and a positive integer k, and the question is whether there is a set S of at most k vertices in G—a connected dominating set of G—such that (i) S is a dominating set of G, and (ii) the subgraph G[S] induced by S is connected; the parameter is k. The underlying decision problem is a basic connectivity problem which is long known to be NP-complete, and it has been extensively studied using several algorithmic approaches. Parameterized Connected Dominating Set is W[2]-hard, and therefore it is unlikely (Downey and Fellows, Parameterized Complexity, Springer, 1999) that the problem has fixed-parameter tractable (FPT) algorithms or polynomial kernels in graphs in general. We investigate the effect of excluding short cycles, as subgraphs, on the kernelization complexity of Parameterized Connected Dominating Set. The girth of a graph G is the length of a shortest cycle in G. It turns out that the Parameterized Connected Dominating Set problem is hard on graphs with small cycles, and becomes progressively easier as the girth increases. More precisely, we obtain the following kernelization landscape: Parameterized Connected Dominating Set
  • does not have a kernel of any size on graphs of girth three or four (since the problem is W[2]-hard);
  • admits a kernel of size 2 k k 3k on graphs of girth at least five;
  • has no polynomial kernel (unless the Polynomial Hierarchy collapses to the third level) on graphs of girth at most six, and,
  • has a cubic ( $\mathcal {O}(k^{3})$ ) vertex kernel on graphs of girth at least seven.
While there is a large and growing collection of parameterized complexity results available for problems on graph classes characterized by excluded minors, our results add to the very few known in the field for graph classes characterized by excluded subgraphs.  相似文献   

19.
A perfect stable in a graph G is a stable S with the property that any vertex of G is either in S or adjacent with at least two vertices which are in S. This concept is an obvious generalization of the notion of perfect matching. In this note, the problem of deciding if a given graph has a perfect stable is considered. This problem is shown to be in general NP-complete, but polynomial for K1,3-free graphs.  相似文献   

20.
Inspired by recent algorithms for electing a leader in a distributed system, we study the following game in a directed graph: each vertex selects one of its outgoing arcs (if any) and eliminates the other endpoint of this arc; the remaining vertices play on until no arcs remain. We call a directed graph lethal if the game must end with all vertices eliminated and mortal if it is possible that the game ends with all vertices eliminated. We show that lethal graphs are precisely collections of vertex-disjoint cycles, and that the problem of deciding whether or not a given directed graph is mortal is NP-complete (and hence it is likely that no “nice” characterization of mortal graphs exists).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号