共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
以醋酸锂和钛酸四正丁酯为原料,制备了纯相Li_4Ti_5O_(12),再用简单的水热法合成Li_4Ti_5O_(12)/Fe_3O_4复合材料作为锂离子电池的负极材料,通过XRD、SEM以及电池测试系统对纯相Li_4Ti_5O_(12)和Li_4Ti_5O_(12)/Fe_3O_4复合材料进行了结构、形貌及电化学性能测试。结果表明,制得的复合物具有较好的球形结构且粒径较小(200~300 nm),综合电化学性能较好。由于复合的Fe_3O_4有较高的理论容量,该Li_4Ti_5O_(12)/Fe_3O_4复合材料表现出比纯相Li_4Ti_5O_(12)大的容量,在1.0 C下循环100圈后,Li_4Ti_5O_(12)/Fe_3O_4的放电比容量仍能达到470.2 m A·h/g,同时也表现出比纯相Li_4Ti_5O_(12)更优的倍率性能。 相似文献
6.
采用乳液共凝法制备纳米Fe3O4/天然橡胶(NR)复合材料,所用纳米Fe3O4是用化学共沉淀法制备的纳米Fe3O4乳液。研究了纳米Fe3O4用量对纳米Fe3O4/NR复合材料的力学性能、热稳定性、加工性能的影响。结果表明:纳米Fe3O4的用量对纳米Fe3O4/NR复合材料的性能有较大的影响。在NR中加入纳米Fe3O4,混炼胶的G′较高,tanδ较小,提高了复合材料的力学性能和热稳定性。当纳米Fe3O4的质量分数为15%时,纳米Fe3O4/NR复合材料的综合性能较好。 相似文献
7.
8.
9.
纳米Fe3O4磁流体的制备及其性能研究 总被引:2,自引:0,他引:2
研究了化学共沉淀法制备Fe3O4纳米磁性液体的工艺过程,采用简易的方法对所制得的磁流体进行了检测和表征.对制备磁流体过程中的影响因素作了简单的分析并采用六因素四水平的正交实验对各因素进行了优化,得到了较佳的制备工艺.反应过程中保持pH值一直处于9~10之间,铁盐浓度为0.1 mol/L,其中Fe2 /Fe3 为1∶1,表面活性剂PEG4000的加入量为0.77 g(即mFe3O4/mpEG4000=1∶1),机械搅拌速率为1 000 r/min,采用机械搅拌和超声搅拌交替进行,反应温度为60 ℃并在此温度下保温陈化30 min.XRD分析表明产物微粒达到34.5 nm,采用TEM对磁流体悬浮液进行分析发现悬浮颗粒的粒径在20~40 nm之间. 相似文献
10.
以FeSiAl片状磁粉、膨胀石墨为主要原料,采用水热法制备石墨烯/Fe_3O_4/FeSiAl复合材料。通过XRD、SEM、Raman、FTIR和矢量网络分析仪(VNA)对石墨烯/Fe_3O_4/FeSiAl复合材料的晶相、微观形貌和吸波性能进行了表征和分析。结果表明:通过水热还原法,将氧化石墨烯还原成石墨烯,并且生成的石墨烯及Fe_3O_4颗粒均匀包覆在FeSiAl片状磁粉上,这种片状和颗粒状不同结构的复合,制备出了兼具磁损耗和介电损耗的吸波材料。在0.2~2.66 GHz频段内,当氧化石墨烯和FeSiAl质量比为1∶9,相应匹配厚度为2 mm时,石墨烯/Fe_3O_4/FeSiAl复合材料在2.56 GHz处最小反射率可达到–17 dB,其有效吸收频带范围(反射率小于–10 dB)为2.27~2.66 GHz。随着氧化石墨烯与FeSiAl质量比的增加,石墨烯/Fe_3O_4/FeSiAl复合材料的有效吸收频带向高频移动,有助于该吸波材料在高频段的应用。 相似文献
11.
12.
纳米Fe3O4颗粒的制备及应用 总被引:1,自引:0,他引:1
介绍了纳米Fe3O4颗粒的制备方法,这包括化学共沉淀法、沉淀氧化法、微乳液法、水热法、机器研磨法、多元醇法、超声沉淀法、溶胶-凝胶法等,并比较了各种制备方法的特点;在此基础上,进一步论述了纳米Fe3O4颗粒在生物医学、导电磁性材料、催化剂以及磁记录材料中的应用进展。 相似文献
13.
14.
Fe_3O_4/PANI抗氧化水基磁流体的制备与表征 总被引:2,自引:0,他引:2
在无氮气保护条件下,用化学共沉淀法制备了四氧化三铁(Fe3O4)纳米颗粒,并通过表面原位合成法将颗粒用聚苯胺(PANI)包裹,由此获得兼具磁性和导电性能的纳米四氧化三铁/聚苯胺(Fe3O4/PANI)材料。作者称其为Fe3O4/PANI抗氧化水基磁流体。透射电子显微镜(TEM)分析表明,该法制备的Fe3O4/PANI复合粒子的粒径在30~50 nm,其分散性能比包裹前的Fe3O4粒子明显改善。红外光谱(FTIR)和X射线衍射(XRD)测试结果发现,Fe3O4粒子及Fe3O4/PANI复合粒子具有不同的物态和晶相结构。对纳米复合粒子的抗氧化性能和磁性能的检测证实,原位合成的Fe3O4/PANI复合粒子不仅能有效防止在空气中被氧化,还可在磁场环境中实现快速富集、定位,为Fe3O4/PANI纳米复合粒子在生物医学领域的应用提供了可能。 相似文献
15.
采用浸渍法将磷钨酸、磷钼酸和硅钨酸等杂多酸负载在Fe3O4磁性材料上,并将杂多酸/Fe3O4磁性材料作为光催化剂用于降解次甲基蓝溶液,考察了光源类型(紫外光与太阳光)、杂多酸种类及催化剂用量等对光催化降解效果的影响。结果表明,在250 W汞灯照射、次甲基蓝溶液浓度20 mg·L-1、降解体系pH=5.5、光催化剂用量30 mg和光催化120 min条件下,次甲基蓝降解率达85%,负载型杂多酸/Fe3O4磁性催化剂对次甲基蓝的降解效果明显优于相应单一的Fe3O4或杂多酸催化剂。 相似文献
16.
17.
冻融法制备微米级Fe3O4/聚乙烯醇磁性水凝胶及其磁力学性能研究 总被引:4,自引:0,他引:4
以微米级Fe3O4粉末和聚乙烯醇(PVA)为原料,采用反复冷冻-融化技术(冻融)制备了Fe3O4/PVA磁性水凝胶,研究了磁性水凝胶的力学性能、磁场阈值,磁性能等随Fe3O4的含量及冻融次数的变化行为,并使用扫描电子显微镜(SEM)以及X射线衍射(XRD)分别研究了Fe3O4/PVA磁性水凝胶的微观形貌和结晶性能.结果表明随冻融循环次数的增加,Fe3O4/PVA磁性水凝胶的力学性能、磁场阈值,及磁性能等均随Fe3O4的含量及冻融次数显著变化;Fe3O4在磁性水凝胶中分布均匀,PVA水凝胶经反复冷冻-融化后结晶性能有所提高. 相似文献
18.
在超声辅助无惰性气体保护的条件下,采用氧化共沉淀和化学共沉淀相结合的方法成功制备了四氧化三铁纳米粒子。通过XRD、FTIR、SEM和TEM等对其进行表征,结果表明,制备的四氧化三铁纳米粒子具有较好的晶形结构,粒径约为7 nm。通过正交实验证明了超声时间是影响四氧化三铁纳米粒子粒径的主要因素;而Fe2+与Fe3+的摩尔比是影响四氧化三铁纳米粒子粒径的次要因素。用柠檬酸对四氧化三铁进行表面改性,制备了环境友好型水基磁流体;磁性结果显示,其矫顽力及剩磁均很低,表现出较好的超顺磁性。 相似文献
19.
20.
纳米光催化剂TiO_2/Fe_3O_4的制备及表征 总被引:2,自引:3,他引:2
采用两步法制备磁性负载纳米光催化剂TiO2/Fe3O4。首先用液相共沉淀法制备磁性纳米Fe3O4颗粒;然后用溶胶-凝胶法,以钛酸四正丁酯为先驱体,通过水解缩聚在Fe3O4纳米颗粒表面包覆TiO2层,得到易于磁分离回收的复合纳米光催化剂TiO2/Fe3O4,粒径大约为30 nm。利用TEM、XRD、FT-IR、VSM对Fe3O4和TiO2/Fe3O4的结构和性能进行了表征,结果表明,制备的Fe3O4为面心立方晶体(FCC)结构,具有超顺磁性;TiO2为锐钛矿相,包覆在Fe3O4的表面,形成了核-壳式结构的TiO2/Fe3O4复合光催化剂。 相似文献