首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of HLA-DRB1 and DQB1 genes with IDDM in Koreans was assessed using 115 IDDM patients and 140 nondiabetic controls. DQB1*0201 is the only DQB1 allele positively associated with IDDM while DQB*0602, *0601 and *0301 are negatively associated. Three DRB1 alleles (DRB1*0301, DRB1*0407 and DRB1*0901) are positively associated while four DR allele groups (DRB1*15, DRB1*12, DRB1*10 and DRB1*14) are negatively associated. However, Haplotype analyses indicated that DQB1*0302, DRB1*0405 and DRB1*0401 may confer susceptibility because the DRB1*0405-DQB*0302 and DRB1*0401-DQB1*0302 haplotypes are positively associated with the disease. The lack of association in Koreans with the DQB1*0302 allele, which appears predisposing in studies of non-Orientals, is due to its strong linkage disequilibrium (LD) with the protective DRB1*0403 and *0406 alleles, while the lack of association with DRB1*0405 is because of its strong LD with the protective DQB1*0401 allele. Nine DR/DQ genotypes confer significantly increased risk to IDDM. Seven of the nine genotypes (DR3/4s, DR1/4s, DR4s/13, DR4s/8, DR4s/7, DR9/13 and DR3/9) were also found to be at high risk to IDDM in other populations, while the two others (DR1/9 and DR9/9) are only found in Koreans. Surprisingly, DR4/4 homozygotes are not associated with high risk to IDDM in Koreans. This observation can be explained by the high frequency of protective DR4 subtypes and the protective DQ alleles (0301 and 0401) associated with the susceptible DR4 alleles. Our analyses indicate that the counterbalancing act between susceptible DRB1 and protective DQB1, and vice versa, that has already been observed in Chinese and Japanese, is the major factor responsible for the low incidence of diabetes in Koreans.  相似文献   

2.
T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4(+) human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4(+) T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1-20. DR3.Ab0 mice, immunized with bacillus Calmette-Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1-20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette-Guérin but not to p1-20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171-200, 311-340, and 411-440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51-70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1-20 and p51-70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.  相似文献   

3.
We have investigated the genetic and molecular basis of immune responsiveness to short ragweed (SRW) (Ambrosia artemisiifolia) extract, and group 5 allergens from short and giant (Ambrosia trifida) ragweed using transgenic mice expressing DQ6 (HLA-DQA1*0103, HLA-DQB1*0601) and DQ8 (HLA-DQA1*0301, HLA-DQB1*0302) genes in class II knockout (A beta0) mice. Panels of overlapping peptides spanning the Amb a 5 and Amb t 5 Ags were synthesized. Mice were immunized with whole SRW extract or individual peptides s.c. and lymph node cells (LNC) were challenged in vitro. Strong T cell responses to SRW extract were measured in both HLA-DQ transgenic mice, while control, HLA-DQ6-/DQ8-/H-2A beta0, mice were unresponsive. IL-5 and IL-10 were the primary cytokines produced by in vitro challenged LNC of SRW-primed transgenic mice. HLA-DQ6-restricted T cell responses were detected to all three peptides of Amb t 5 and two determinants (residues 1-20 and 11-30) on Amb a 5. In contrast, LNC of HLA-DQ8 mice did not recognize peptide 11-30 of Amb t 5 Ag, but recognized several Amb a 5 determinants. The immune response in transgenic mice was dependent upon CD4+ T cells and was HLA-DQ restricted. Primed with purified Amb t 5, both transgenics recognized peptide 21-40, and an additional DQ6-restricted epitope was found within residue 1-20. SRW-immunized HLA-DQ6 mice respond to peptide 11-30 of Amb a 5, while HLA-DQ8 mice strongly recognize peptide 1-20. These results demonstrate the specificity of HLA class II polymorphism in allergen sensitivity and pave the way for developing antagonistic peptides for desensitization.  相似文献   

4.
A 39-year-old woman had relapsing polychondritis and Beh?et's disease, which was described as mouth and genital ulcers with inflamed cartilage syndrome (MAGIC). Serologic human leukocyte antigen analysis showed A24 (9), A31 (19), B56 (22), B62 (15), Cw6, DR4, DR9. Human leukocyte antigen allele analysis revealed DRB1* 0406/0901, DQA1* 0301/0301, DQB1* 0302/0303, DPB1* 0201/0501 through determining the genotype using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Treatment with methotrexate (5 mg/week) and pentoxifylline (300 mg/d) was effective to control oral ulcers, erythema nodosum, and arthritis.  相似文献   

5.
Certain HLA-DR alleles have been associated with predisposition to human rheumatoid arthritis (RA). There is also evidence that certain HLA-DQ alleles may also be important in determining susceptibility to RA. We have previously demonstrated that mice transgenic for HLA-DQ8, a DQ allele associated with susceptibility to RA, develop severe arthritis after type II collagen immunization. To investigate the influence of polymorphic difference at the DQ loci on susceptibility to arthritis, we generated mice transgenic for HLA-DQ6, an allele associated with a nonsusceptible haplotype. The DQ6 mice were found to be resistant to collagen-induced arthritis. We also assessed the combined effect of an RA-susceptible and an RA nonassociated DQ allele by producing double-transgenic mice expressing DQ6 and DQ8 molecules, representing the more prevalent condition found in humans where heterozygosity at the DQ allele is common. The double-transgenic mice developed moderate CIA when immunized with CII when compared with the severe arthritis observed in DQ8 transgenic mice, much like RA patients bearing both susceptible and nonsusceptible HLA haplotypes. These studies support a role for HLA-DQ polymorphism in human RA.  相似文献   

6.
Studies in myasthenia gravis (MG) patients demonstrate that polymorphism at the HLA-DQ locus influences the development of MG. Several studies using the mouse models also demonstrate the influence of class II molecules, especially the H2-A, which is the mouse homologue of HLA-DQ, in experimental autoimmune myasthenia gravis (EAMG). We used transgenic mice expressing two different DQ molecules, DQ8 (DQA1*0301/B1*0302) and DQ6 (DQA1*0103/B1*0601), to evaluate the role of HLA-DQ genes in MG. These mice do not express endogenous mouse class II molecules since they contain the mutant H2-A beta0 gene. The mice were immunized with Torpedo acetylcholine receptor, and EAMG was assessed by clinical evaluation and was confirmed by electrophysiology. Clinical scores for EAMG were highest in HLA-DQ8 transgenic mice, whereas the scores of HLA-DQ6 mice rarely exceeded grade 1. There was no incidence of EAMG in class II-deficient (H2-A beta0) mice. These results demonstrate that polymorphism at the HLA-DQ locus affects the incidence and the severity of EAMG. The manifestation of susceptibility to EAMG in the context of human class II molecules underscores the important roles of these molecules in the initiation and perpetuation of EAMG.  相似文献   

7.
Certain DQ alpha/beta dimeric molecules have been shown to play a major role in determining susceptibility or resistance to IDDM. Whether or not predisposition associated with DR4 haplotypes is exclusively due to linkage to DQB1*0302 and DQA1*0301 alleles is still a controversial issue. A modifying effect of certain DRB1*04 subtypes on the susceptibility encoded by DQ alleles is possible, since not all DRB1*04-DQB1*0302 haplotypes are associated with the disease. The distribution of DRB1*04 subtypes was analysed in 240 DR4-positive Caucasian IDDM patients and 110 DR4-positive healthy controls using allele-specific hybridization after genomic amplification. Although an important contribution to IDDM predisposition was encoded by the DQB1*0302 allele which was found in the majority of patients (94.2% vs 64.7% in controls, Odd's ratio OR = 8.8, P < 0.0001), differences between DRB1*04 variants persisted after the effect of the DQB1 locus was removed by matching patients and controls for DQB1*0302. Thus, the DRB1*0402 allele conferred a strong IDDM-predisposing effect (OR = 3.1, P < 0.02) which was highly significant in the absence of DR3 on the second haplotype (OR = 5.6, P < 0.0001) but was not visible among DR3/4 heterozygote individuals. Conversely, the DRB1*0404 allele conferred a strong protective effect (OR = 0.26, P < 0.0001) which was dominant even in the presence of the associated high risk DR3 haplotype (OR = 0.21, P < 0.03). These data indicate that DQ molecules are not the sole contributors to the DR4-associated IDDM predisposition, and that peculiar DR4 subtypes play a significant role in susceptibility to or protection from the disease. DRB1*0402 differs from DRB1*0404 by only two acidic residues at positions 70 and 71 within the peptide binding groove, instead of amide and basic amino acids. This might induce changes of peptide binding specificity that correlate with the genetic linkage of IDDM predisposition.  相似文献   

8.
Glutamic acid decarboxylase (GAD) has been defined as a major target antigen in insulin-dependent diabetes mellitus (IDDM). To identify the molecular ligands triggering a T cell response to GAD, a panel of human GAD65-specific T lymphocyte lines was generated from peripheral blood of three recent onset IDDM patients. All lines derived from a patient expressing the high-risk-conferring HLA-DR*0301/ *0401 haplotypes recognized a single epitope localized between amino acid positions 270 and 283 of GAD65, a stretch that is located in close proximity to the homology region shared with Coxsackie virus P2-C protein. All lines with this specificity were restricted to the DRA, B1*0401 product of the DR4 haplotype. Analysis of the GAD-specific T cell response in a second patient homozygous for DR4 haplotypes demonstrated that the same DRA, B1*0401 allele selected T cells specific for a different determinant. The T cell response profile in a third patient showed that DR*1501/ *1601-encoding haplotypes could present at least three different epitopes to GAD65-specific T lymphocytes. One of these epitopes was presented by a DR allele associated with the resistance-conferring DRB1*1501 haplotype. GAD-specific T cell lines could not be isolated from HLA class II-matched normal individuals. Our data reveal that (a) the T cell response to GAD65 is quite heterogenous in recent onset IDDM patients; (b) HLA-DR, not DQ, seems to be the principal restriction element used by T cells present at the onset of the disease; and (c) T cells responding to epitopes containing identical sequences to Coxsackie virus P2-C protein were not detected.  相似文献   

9.
The role of HLA class II alleles in the genetic susceptibility to develop insulin-dependent diabetes mellitus (IDDM) was examined by means of PCR and oligospecific probes in 63 IDDM children and 74 controls subjects. In diabetic patients we found a significant increase in the alleles frequency DR3, DR4, DQB1*0302 and DQA1*0301 compared to the control group, where the most prevalent alleles were DR2, DR14 (DRB1*1402), DQA1*0101 and DQA1*0201. All the risk genotypes in the diabetic group were similar than in other caucasian groups: DR3/DR4-DQB1*0201/0302-DQA1*0301/0501 and DR4/DR4-DQB1*0302/0302-DQA1*0301/0301. The homozygote character no asp57 conferred an absolute risk (AR) of 3.87 and the marker Arg52 an AR of 5.78/100.000 bab year. The homozygosis for both markers (no Asp57 + Arg52) had an AR of 7.56/100.000 bab year. Regarding environmental factors associated with IDDM, our population under study showed a low prevalence of infectious agents (mainly mumps and rubella, specifically associated with IDDM) and a high prevalence of effective breast-feeding (over 3 months). These factors could be exercising a protector role in the development of IDDM. The factors that appear to be important in the low incidence of IDDM in Santiago de Chile are: the low prevalence of infectious agents related to IDDM, the high percentage of breast-feeding children in the population, the reduced frequency of susceptible molecules as DR3, DQB1*0201 (compared to other caucasian groups) and the presence of protective genotypes related to DR13 and DR14 observed in the non diabetic children.  相似文献   

10.
HLA-DQ genes are the main inherited factors predisposing to IDDM. This gene region harbors long terminal repeat (DQ LTR) elements of the human endogenous retrovirus HER V-K, which we analyzed for a possible association with disease. We first investigated whether LTR segregate with DQ alleles in families. Members (n = 110) of 29 families with at least one diabetic child, unrelated patients with IDDM (n = 159), and healthy controls (n = 173) were analyzed. Genomic DNA was amplified for DQ LTR3 by a nested primer approach as well as for DQA1 and DQB1 second exons, to assign DQA1 and DQB1 alleles. DQ LTR segregated in 24 families along with DQ alleles. Of the 29 families, 20 index patients were positive for DQ LTR. The DQ LTR was in all patients on the haplotype carrying the DQA1 *0301 and DQB1 *0302 alleles. A majority of patients had DQ LTR (62%) compared with controls (38%) (p < 1.3 x 10(-5)), even after matching for the high-risk alleles DQA1 *0501, DQB1 *0201-DQA1 *0301, and DQB1 *0302 (79% of patients and 48% of controls; p < 0.02). Subtyping for DRB1 *04 alleles in all DQB1 *0302+ individuals showed 56% DRB1 *0401, DQB1 *0302 [LTR' patients vs. 29% controls with the same haplotype (p < 0.002)]. In conclusion, these data demonstrate the segregation of DQ LTR with DQA1, DQB1 alleles on HLA haplotypes. Furthermore their presence on DRB1 *0401-, DQA1 *0301-, and DQB1 *0302-positive haplotypes suggest that they contribute to DQ-related susceptibility for IDDM.  相似文献   

11.
To investigate autoimmunity to glutamic acid decarboxylase (GAD) 65 in Japanese patients with insulin-dependent diabetes mellitus (IDDM, type I diabetes), we established seven CD4+ T-cell clones, by stimulating peripheral blood mononuclear cells (PBMC) of six IDDM patients, using a mixture of overlapping human GAD65 peptides. No GAD65 autoreactive T-cell clones were evidenced in four healthy controls. Specificities of T-cell clones were as follows: (a) two clones specific to GAD65 p111-131 (residue 111 to 131) + DR53 (DRB4*0103); (b) one clone specific to GAD65 p413-433 + DR1 (DRB1*0101); (c) two clones specific to GAD65 p200-217 + either DR9 (DRB1*0901) or DR8 (DRB1*0802); and (d) two clones specific to GAD65 p368-388 + DP2 (DPA1*01 or 0201-DPB1*0201). Two DR53-restricted and one DR1-restricted T-cell clones, responded to a recombinant human GAD65 protein, and showed cytotoxicity against B lymphoblastoid cell lines pre-pulsed with the peptides. Six T-cell clones exhibited the Th1-like phenotype. Interestingly, two DR53-restricted T-cell clones killed a Fas-deficient B lymphoblastoid cell line, thereby indicating that cytotoxicity was not completely dependent on a Fas-Fas ligand interaction. Thus, the T-cell epitopes were mapped in a limited portion of GAD65 protein, with a tendency to be restricted by disease-associated HLA-DR, but not DQ molecules.  相似文献   

12.
To confirm the significant association of sarcoidosis with HLA-DR5, -DR6, and -DR8 associated DRB1 alleles, in sarcoidosis patients from the eastern Japan (Kanto) area found in our previous study, we used HLA class II genotyping of patients in another region-Hokkaido, in northern Japan. The annual incidence of sarcoidosis in Hokkaido is about three times that of eastern Japan, and Hokkaido has one of the world's highest incidences of this disease. For the HLA class II (HLA-DRB1, -DRB3, -DQA1, -DQB1) genotyping, we used the polymerase chain reaction restriction fragment polymorphism (PCR-RFLP) method with 150 subjects: 40 sarcoidosis patients and 110 healthy controls. The frequencies of DRB1*12, DRB1*14, DRB1*08, DQA1*0501, and DQB1*0301 were significantly increased in the patients, compared with the controls. Our finding of a high frequency of DRB1*08 (which lacks the DRB3 gene encoding the DR52 antigen) in patients living in both eastern Japan and in Hokkaido, confirms that it is the HLA-DRB1 locus, rather than that of the HLA-DRB3, -DQA1, or -DQB1, which determines the susceptibility to sarcoidosis.  相似文献   

13.
Susceptibility to autoimmune hepatitis (AIH) is associated with the HLA A1-B8-DR3 haplotype, DR4 antigen, and, more specifically, the HLA DRB3*0101, DRB1*0301, and DRB1*0401 alleles. Few investigators, however, have examined the HLA C locus in AIH, which warrants detailed study in view of its recently described roles in immunoregulation. Eighty-seven adult, white patients with well-characterized type 1 AIH and 100 controls were studied. HLA C and HLA DRB1 alleles were assigned by polymerase chain reaction (PCR)-based genotyping. HLA A and B antigens were determined by standard microlymphocytotoxicity assay. Extended haplotypes were constructed according to known patterns of linkage disequilibrium. Only one HLA C locus allele, Cw*0701, which was present in 54% of patients versus 34% of controls (P = .006; relative risk [RR] = 1.54) was associated with AIH. The overall increase in the frequency of the Cw*07 gene (70.1% of patients vs. 54% of controls; P = .024; RR = 1.3) was due entirely to inheritance of the Cw*0701 allele rather than the other Cw*07 alleles, Cw*0702, *0703, and *0704. The RR for Cw*0701 (RR = 1.54) is greater than that for HLA A1 (RR = 1.33) and DRB1*0301 (RR = 1.49), but less than that for HLA-B8 (RR = 1.75). The present findings suggest that the gene or genes conferring susceptibility to AIH lie in the region centromeric to the HLA A locus between HLA C and DRB1. Although linkage disequilibrium with both B8 and DRB1*0301 may account for our finding of an increased frequency of Cw*0701, it is also possible that this allele contributes to disease susceptibility, perhaps by interaction with natural killer cells or cytotoxic T lymphocytes.  相似文献   

14.
Self peptides bound to HLA-DQ7 (alpha1*0501-beta1*0301), one of the HLA molecules associated with protection against insulin-dependent diabetes mellitus, were characterized after their acid elution from immunoaffinity-purified HLA-DQ7 (alpha1*0501-beta1*0301) molecules. The majority of these self peptides derived from membrane-associated proteins including HLA class I, class II, class II-associated invariant chain peptide and the transferrin-receptor (TfR). By in vitro binding assays, the specificity of these endogenous peptides for HLA-DQ7 (alpha1*0501-beta1*0301) molecules was confirmed. Among these peptides, the binding specificity of the TfR 215-230 self peptide was further examined on a variety of HLA-DQ and DR dimers. Several findings emerged from this analysis: (1) this peptide displayed HLA-DQ allelic specificity, binding only to HLA-DQ7 (alpha1*0501-beta1*0301); (2) when either the DQalpha or DQbeta chain was exchanged, little or no binding was observed, indicating that specificity of HLA-DQ peptide binding was determined by polymorphic residues of both the alpha and beta chains. (3) Unexpectedly, the TfR 215-230 self peptide, eluted from DQ, was promiscuous with regard to HLA-DR binding. This distinct DR and DQ binding pattern could reflect the structure of these two molecules as recently evidenced by crystallography.  相似文献   

15.
We report here the identification of four novel DRB alleles using a reverse hybridization (CANTYPE) assay. Molecular cloning and sequencing confirmed the initial unusual hybridization patterns. All four new alleles were detected during routine HLA typing for the Canadian Unrelated Bone Marrow Donor Registry. DRB1*0703 is identical to DRB1*0701 except for a single nucleotide substitution (AGA-->AGT), changing codon 29 from Arg to Ser, a so far undetected DRB polymorphism. DRB1*0817 differs from DRB1*0801 by a single nucleotide substitution (TAC-->TTC), changing codon 47 from Tyr to Phe. This polymorphism has not, until now, been identified in DRB1*08 alleles. Compared with DRB3*0301, DRB3*0302 contains a single nucleotide substitution (TAC-->CAC) at codon 30, changing the encoded Tyr to His. This polymorphism is typical for DRB3*02 alleles. DRB3*01014 is identical to DRB3*0101 except for a single silent nucleotide substitution (GGG-->GGA) at codon 84. This polymorphism has previously only been described for the DRB1*15012 allele. DRB1*0817, DRB3*0302 and DRB3*01014 may have arisen from gene conversion, but DRB1*0703 most likely was generated by a point mutation event. The DRB3*0302 allele was detected in two unrelated subjects, while the other three have each only been detected once.  相似文献   

16.
HLA class II molecules bind and present peptide Ags to T cells, binding specific sets of peptides due to polymorphism in the peptide binding groove. Class II proteins associate with the invariant chain (Ii chain) and its derived class II-associated Ii peptide (CLIP). Ii chain association is important for normal trafficking of class II proteins to the peptide loading vesicles and for blocking premature access of peptides to HLA class II molecules during maturation. We have previously shown that juvenile dermatomyositis is associated with the HLA-DQA1*0501 allele. There is limited information available about the interaction of any DQ molecule with the Ii chain and little information about binding of individual peptides to HLA-DQalpha1*0501/DQbeta1*0301. We sequenced peptides eluted from the juvenile dermatomyositis-associated class II allele HLA-DQalpha1*0501/DQbeta1*0301. Surprisingly, we found no Ii chain or CLIP. Further examination of peptide binding to the HLA-DQalpha1*0501/DQbeta1*0301 molecule demonstrated poor CLIP binding. However, newly synthesized HLA-DQalpha1*0501/DQbeta1*0301 molecules do associate with intact Ii chain. Molecular modeling suggests that CLIP binds differently to HLA-DQalpha1*0501/DQbeta1*0301 than to DR molecules. The lack of CLIP association suggests that HLA-DQalpha1*0501/DQbeta1*0301 has access to peptides earlier in the processing pathway and so might encounter novel peptides that induce autoimmunity.  相似文献   

17.
We report on the role of HLA-DQA1 and DQB1 alleles in determining susceptibility to insulin-dependent diabetes mellitus (IDDM) in Hong Kong Chinese and investigate whether these alleles affect the age of onset of the disease. We studied 76 unrelated Chinese patients and 250 controls. There was no apparent predisposing effect of non-aspartic acid residues at position 57 of the DQ beta chain (Asp57-) but there was an excess of homozygous genotypes containing arginine at position 52 of the DQ alpha chain (Arg52+). This excess was mainly attributable to the genotype DQA1*0301/DQA1*05011 in early-onset disease. There was a significant excess of heterodimers of DQ alpha and DQ beta carrying Arg52+ and Asp57- in both early-onset and late-onset disease, but the excess in early-onset disease was mainly attributable to a single heterodimer formed by DQA1*05011 and DQB1*0201. Of three DQA1/DQB1 genotypes containing a double dose of Arg52+ and Asp57-, only one had a strong association with both early-onset and late-onset disease. We show that early-onset IDDM and late-onset IDDM in Chinese may be separated on the basis of their associated DQA1 and DQB1 genotypes and we conclude that previously reported associations of IDDM with Arg52+ and Asp57- residues in Chinese are secondary to specific combinations of DQA1 and DQB1 alleles. We also show that DRB1 molecules play a distinct role in determining susceptibility to early-onset IDDM but the greatest effect is exerted by specific DR/DQ genotypic combinations.  相似文献   

18.
Antibodies against the extracellular domain of bullous pemphigoid antigen 2 (BPAG2) are thought to play a key role in the pathogenesis of bullous pemphigoid (BP), the most frequent autoimmune bullous disease of the skin. Autoreactive T cell responses to BPAG2 were investigated in 16 BP patients and 24 healthy controls by coculture of PBMC with two recombinant BPAG2 proteins (extracellular domain of BPAG2). Primary in vitro T cell responses to BPAG2 were observed in 10/12 BP patients expressing the BP-associated HLA-DQB1*0301 allele and 8/10 DQB1*0301 positive healthy individuals. DQB1*0301 also restricted three autoreactive T cell lines from two BP patients and a healthy donor. In contrast, PBMC from 14 normal patients carrying HLA class II alleles other than DQB1*0301 were not stimulated by BPAG2. Autoreactive BPAG2-specific CD4(+) T cell lines and clones from five BP patients produced both Th1 and Th2 cytokines, whereas three autoreactive T cell lines from three DQB1*0301 positive normal patients produced exclusively IFN-gamma. The absence of BPAG2-specific Th2 cells in healthy individuals strongly suggests that autoreactive Th2 responses to BPAG2 are restricted to BP patients and may thus be critical in the pathogenesis of BP.  相似文献   

19.
To analyze whether HLA may be a determinant of the risk of developing cervical cancer precursor lesions, the association between HLA and cervical neoplasia among HPV16-seropositive and -negative subjects was determined in a population-based cohort in the V?sterbotten county of Northern Sweden. HLA genotyping of DR and DQ was done by PCR in 74 patients and 164 healthy controls matched for age, sex and area of residence. The presence of DQA1*0102 was weakly associated with cervical neoplasia in HPV16-seropositive patients. DQB1*0602 was weakly associated with disease in all patients, but was strongly increased among HPV16-seropositive patients compared to HPV16-seropositive controls. DR15 had an association with disease that was particularly strong among HPV16-seropositive subjects. The haplotype DQA1*0102-DQB1*0602 (DQ6) was also weakly associated with disease in all patients and significantly increased among HPV16-positive patients when compared to HPV16-positive controls. A similar association was seen when analysis was restricted to CIN 2-3 patients. DQA1*0501-DQB1*0301 (DQ7) was more common among HPV16-negative patients than among HPV16-negative controls and was also more common among HPV16-negative patients than among HPV16-positive patients. In conclusion, DQA1*0102-DQB1*0602 (DQ6) is associated with an increased risk of cervical neoplasia among HPV16-seropositive subjects and DQA1*0501-DQB1*0301 (DQ7) with an increased risk among HPV16-seronegative subjects.  相似文献   

20.
The HLA-associated susceptibility to develop celiac disease (CD) seems mainly to be conferred by a particular HLA-DQ heterodimer encoded by the DQA1*0501 and DQB1*0201 genes either in cis or in trans position. To study the possible influence of DRB1 or other DQA1 and DQB1 alleles on the CD susceptibility conferred by these DQ genes, we performed genomic HLA typing of 94 CD patients, selected those who carried at least one copy of the DRB1*0301-DQA1*0501-DQB1*0201 haplotype (N = 89) and compared them to 47 random, healthy Norwegians matched with the patients to carry at least one copy of the above haplotype. We found an excess of DQB1*0201 homozygosity in the patients. This was due to an increased frequency of the DRB1*0301-DQA1*0501-DQB1*0201 and DRB1*0701-DQA1*0201-DQB1*0201 haplotypes present on the other chromosome. We propose that, in individuals carrying the DQA1*0501 and DQB1*0201 alleles, the presence of a second copy of the DQB1*0201 allele increases susceptibility to CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号