首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
碳纳米管/铝基复合材料的制备及摩擦性能研究   总被引:9,自引:1,他引:9  
采用无压渗透法制备了碳纳米管增强铝基复合材料,并对其摩擦性能进行了研究。利用扫描电镜(SEM)观察了复合材料断面的形貌,通过复合材料硬度测量和摩擦磨损实验,研究了不同碳纳米管体积分数对复合材料的硬度及摩擦磨损性能的影响。实验结果表明,碳纳米管均匀地分散于复合材料中,且与铝基体结合良好;碳纳米管的加入增大了复合材料的硬度,且其摩擦系数和磨损率随着碳纳米管体积分数的增大而减小。由于碳纳米管本身具有自润滑和增强作用,碳纳米管的加入极大地改善了铝合金材料的摩擦性能。  相似文献   

2.
研究了碳纤维对CCF/MCPA力学性能的影响以及CCF/MCPA的摩擦学性能和磨损机制。结果表明 ,CCF/MCPA的弯曲强度、弯曲弹性模量、冲击强度和平面剪切强度随碳纤维含量的增加而提高 ;CCF/MCPA的摩擦系数和磨损量随着载荷的增加而降低。其磨损机制主要是磨粒磨损和粘着磨损的特征  相似文献   

3.
指尖密封用炭-炭复合材料摩擦磨损性能   总被引:2,自引:0,他引:2  
为确定指尖密封用炭-炭(炭纤维增强炭基体)复合材料的摩擦学性能,针对指尖密封的轻载使用条件,应用UMT-2摩擦磨损测试仪进行炭-炭复合材料摩擦磨损性能试验,测量摩擦系数与磨损率,并采用扫描电子显微镜(SEM)分析材料的摩擦磨损机理.结果表明,无纬布层垂直于摩擦平面时,材料的摩擦系数和磨损率较低.载荷增加,较高密度材料的磨损率增加缓慢,摩擦系数减小.与载荷相比,材料磨损率受频率的影响较小,且随频率升高摩擦磨损性能越好.磨损表面的SEM分析表明:低频、低载条件下材料发生磨粒磨损;频率的提高加快磨屑膜的成形,自润滑能力增强;载荷的增加虽使磨屑快速被挤压形成磨屑膜,但磨屑膜被不断挤出剥落,纤维裸露断裂产生严重磨损,这一点在材料密度较低时表现更为显著.选用较高密度的材料以及布置无纬布层垂直于摩擦平面可以有效缓解密封材料的磨损.  相似文献   

4.
混杂增强AZ91复合材料的制备及其显微组织和性能   总被引:3,自引:0,他引:3  
采用挤压铸造方法制备了以AZ91镁合金为基体、Al2O3短纤维(Al2O3f)和石墨颗粒(Grp)混杂为增强体的复合材料。观察了不同复合材料的显微组织,测试了其力学性能,并对其摩擦磨损性能进行了研究。结果表明:用此法制备的镁基复合材料增强相分布均匀,与基体结合紧密。硬度随Grp体积分数的增加而降低,Al2O3f的加入能提高复合材料的硬度。抗拉强度和伸长率都随Grp体积分数的增加而减小。Grp体积分数增加,磨损质量损失和摩擦系数都降低。随着摩擦过程的进行,在试样表面逐渐形成一层黑色连续的润滑膜。  相似文献   

5.
A fractal characterization approach was proposed to research pore microstructure evolution in carbon/carbon (C/C) composites during the chemical vapor infiltration process. The data obtained from mercury porosimetry determinations were analyzed using the sponge fractal model and the thermodynamics relation fractal model, respectively. The fractal dimensions of C/C composites at different densification stages were evaluated. The pore microstructure evolution with densification time was studied by fractal dimension analysis. The results showed that C/C composites belong to porous fractal structure. The fractal dimensions increase on the whole with decreasing porosity as the densification proceeds. The fractal dimensions are influenced by the texture of pyrocarbon and decrease with increasing anisotropy from isotropic pyrocarbon to high textural one. Both the complicacy of pore structure and the textural morphology of pyrocarbon can be represented simultaneously by the fractal dimension. The pore evolution of C/C composites in the densification process can be monitored using fractal dimension. Supported by the National Natural Science Foundation of China (Grant No. 50742008)  相似文献   

6.
The friction and wear properties of silicon surface covered with octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) were investigated by a UMT-2 microtribometer with and without water as lubricant, and then compared with that of bare silicon surface. Dry friction measurement results show that OTS SAMs have a very low friction coefficient compared to bare silicon surface under lower sliding velocity and normal contact load. However, heavy wear occurs on OTS SAMs under higher contact stress and sliding velocity. Under water lubrication, OTS SAMs can prevent wear obviously and meanwhile present low coefficient of friction even under high velocities. The improved frictional and anti-wear property on OTS SAMs surface is attributed to the hydrophobic property of OTS and hydrodynamic effect of water. Furthermore, a wear critical phase diagram for OTS SAMs with and without water was proposed, which indicates that OTS SAMs working under water lubrication owns a wider range of available load and velocity to reduce friction and prevent wear. Funded by the National Natural Science Foundation of China (Nos. 50575123, 50275071, 50545035) and National Basic Research Program of China (“973” Program) (No. 2003CB716205)  相似文献   

7.
PTFE和MoS_2填充尼龙复合材料摩擦行为研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)和MoS2填充PA1010复合材料,采用M-2000磨损试验机考察了复合材料与45钢对摩时的摩擦磨损性能,并利用扫描电子显微镜(SEM)分析了PA复合材料磨损表面及其偶件表面转移膜形貌。研究结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能。PTFE质量分数为25%时,复合材料的摩擦学综合性能最佳。PTFE和MoS2共同填充PA1010时,复合材料的摩擦因数和磨损率随着PTFE含量的减少、MoS2含量的增加,整体呈现增大趋势,其中PA+20%PTFE+5%MoS2复合材料的减摩抗磨性能较好。在正常工作条件下(0.21-0.42 m/s,100-300 N),PA+25%PTFE复合材料的抗磨性优于相同条件下PA+20%PTFE+5%MoS2复合材料,但PA+20%PTFE+5%MoS2复合材料具有更宽的速度适用范围。PA复合材料的摩擦磨损性能与其在偶件表面形成的转移膜的特性有重要关系,转移膜的厚度大小、分布均匀状况以及和偶件的结合强度都会对复合材料的减摩抗磨性能产生影响。  相似文献   

8.
C/C-SiC composites with SiC island distribution were prepared via a new processing route. The fabrication process mainly included silicon infiltration by ultrasonic vibration, chemical vapor deposition (CVD), siliconizing, liquid phase impregnation and carbonization. The wear and friction properties were tested by an MM-1000 wet friction machine. The results show that SiC phases are mainly distributed between carbon fibers and pyrocarbons as well as among the pryocarbons. The dynamic friction coefficient of the composites decreases gradually from 0.126 to 0.088 with the increase of the surface pressure from 0.5 to 2.5 MPa at the same rotary speed. Furthermore, under the constant surface pressure, the dynamic friction coefficient increases from 0.114 to 0.126 with the increase of the rotary speed from 1 500 to 2 500 r/min. However, the coefficient decreases to 0.104 when the rotary speed exceeds 4 500 r/min. During the friction process, the friction coefficient of C/C-SiC composite is between 0.088 and 0.126, and the wear value is zero after 300 times brake testing. Foundation item: Project(2006CB600901) supported by the Major State Basic Research and Development Program of China; Project(0991015) supported by Guangxi Science Found, China; Project(200808MS083) supported by Guangxi Education Department Found  相似文献   

9.
铝合金上电沉积Ni-P-CNTs复合镀层及其摩擦性能研究   总被引:1,自引:0,他引:1  
采用复合电沉积法在铝合金表面上制备了镍 磷 碳纳米管(Ni-P-CNTs)复合镀层,并用X射线衍射(XRD)和扫描电镜(SEM)对其进行了表征,分析了电流密度和镀液中碳纳米管的质量浓度对复合镀层形貌及其摩擦磨损性能的影响.当电流密度为3.0 A/dm2时可以得到表面光亮、平整的复合镀层,复合镀层中碳纳米管体积分数随着镀液中碳纳米管质量浓度的增加而增加.Ni-P-CNTs复合镀层比Ni-P镀层具有更高的硬度、耐磨性能和更低的摩擦系数.随着复合镀层中碳纳米管体积分数的增加,复合镀层的磨损量和摩擦系数逐渐降低.复合镀层摩擦性能的改善是由于碳纳米管具有优异的力学性能和良好的自润滑性能.  相似文献   

10.
The tribological properties of perfluoro and non-perfluoro alkylsilane molecular films were investigated and compared detailedly. Their surface properties were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle (CA) measurement. A ball-on-disk tribometer was used to study the frictional properties of these alkylsilane monolayers. The experimental results reveal that the alkylsilane molecular films are good candidates to decrease friction and they have good capability to endure rigorous shear forces. Perfluoro alkylsilane molecular films are bonded better with the Si substrate than the simple hydrocarbon ones. The effects of sliding velocity and normal load on friction coefficient are evident and the friction coefficient increases with the increase of the sliding velocity. However, friction coefficient decreases with the increase of normal load initially and then increases, indicating there exists a critical normal load for the load effect. Funded by the National Natural Science Foundation of China (No.50730007 and 50805086), the Foundation of Tsighua Basic Research, and the National Key Basic Research Program of China(No. 2007CB607604)  相似文献   

11.
To improve tribological property of MC Nylon6,the glass fiber and fly ash reinforced monomer casting nylon composites(GFFAPA)were prepared by anionic polymerization of ε-caprolactam.The friction and wear behaviors of composites under dry condition,water lubrication and oil lubrication were investigated through a ring-black wear tester.Worn surfaces were analyzed using a scanning electron microscope.The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing.Compared to MC nylon,the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites(GFPA)with GF30% respectively decrease by 33.1% and 65.3%,of fly ash reinforced nylon composites(FAPA)with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%.The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear.The worn surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites.Compared with dry friction,the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions.The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.  相似文献   

12.
Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism. Funded by the National Natural Science Foundation of China (No. 50435030)  相似文献   

13.
对7022铝合金的不同温度退火试样进行干滑动摩擦磨损试验,用扫描电镜、显微硬度测试仪和三维形貌仪分析各试样的磨损机制.结果表明,退火温度对材料的显微硬度和摩擦磨损性能有明显影响,退火温度在200℃时,材料显微硬度和摩擦磨损性能最好,此温度下材料得到完全再结晶,且晶粒细化;摩擦磨损性能随着显微硬度的提高而减小.塑变磨损、磨粒磨损和疲劳磨损为7022铝合金的主要磨损机理.  相似文献   

14.
The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 °C, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.  相似文献   

15.
采用热压烧结方法制备了氧化铝/碳化钛复合陶瓷,对材料的摩擦因数和磨损率进行测量,研究了AlTiC中间合金增韧补强氧化铝陶瓷摩擦磨损行为与机制.探讨了氧化铝基精密结构陶瓷的摩擦磨损特性以及力学性能和微观结构对摩擦磨损特性的影响.结果表明,在室温和干摩擦条件下,滑动摩擦因数随法向载荷和转速的增加有下降趋势.室温下新型氧化铝基复相陶瓷材料的磨损机制以微观切削为主.  相似文献   

16.
采用热压烧结方法制备了氧化铝/碳化钛复合陶瓷,对材料的摩擦因数和磨损率进行测量,研究了AlTiC中间合金增韧补强氧化铝陶瓷摩擦磨损行为与机制,探讨了氧化铝基精密结构陶瓷的摩擦磨损特性以及力学性能和微观结构对摩擦磨损特性的影响。结果表明,在室温和干摩擦条件下,滑动摩擦因数随法向载荷和转速的增加有下降趋势,室温下新型氧化铝基复相陶瓷材料的磨损机制以微观切削为主。  相似文献   

17.
An automatic brush-plating system was developed for component remanufacturing. With this system, Ni/nano-alumina composite coatings from an electrolyte containing 20 g/L nano-alumina particles were prepared. Microstructure, surface morphology, microhardness and wear resistance of automatically plated coating and manually plated coatings were investigated comparatively. The results show that the automatically plated coatings are relatively dense and uniform and have lower friction coefficient of 0.089 under lubricant condition, when compared with manually plated coatings with friction coefficient of 0.14. Foundation item: Project(50235030) supported by the National Natural Science Foundation of China; Project(G1999065009) supported by the National Basic Research Program of China  相似文献   

18.
Poly(vinyl alcohol)/Hydroxylapatite (PVA/HA) composite hydrogel was prepared with poly(vinyl alcohol) and hydroxylapatite as raw materials, using the method of repeated freezing and thawing. The morphologies of PVA/HA composite hydrogel were observed by means of high-accuracy 3D profiler and scanning electron microscope (SEM). The compressive elastic modulus and the stress relaxation characteristics of PVA/HA composite hydrogel were measured using the flat-head cylinder indenter. The friction and wear tests between PVA/HA composite hydrogel and bovine knee articular cartilage were performed on the micro-tribometer. The worn morphologies of PVA/HA composite hydrogel were observed with environmental scanning electron microscope (ESEM). The results showed that PVA/HA composite hydrogel has the cross-link network microstructure which is similar to that of the natural bovine knee articular cartilages. With the increase of freezing-thawing cycles and the HA content, the degree of cross-link and the crystallization of PVA/HA composite hydrogel both increase, the elastic modulus increases evidently, the rate of stress relaxation is improved and the value of balance stress decreases. The friction coefficient decreases with the increase of the freezing-thawing cycles and the HA content. The more the freezing-thawing cycles are, the earlier the friction coefficient reaches the stable balance value. The friction deformation depth between PVA/HA composite hydrogel and bovine knee articular cartilage is inversely proportional to freezing-thawing cycles and the HA content. The main wear mechanisms of PVA/HA composite hydrogel are plastic flowing and adhesive flaking. The wear severity degree decreases with the increase of freezing-thawing cycles and the HA content. Supported by Key Program of the National Natural Science Foundation of China (Grant No. 50535050), Program for New Century Excellent Talents in University (Grant No. NCET-06-0479) and Natural Science Foundation of Jiangsu Province (Grant No. BK2005403)  相似文献   

19.
Polytetrafluoroethylene(PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO_2 particles were used as the friction modifiers to improve the friction and wear performance of PTFE-PPS composites. The friction and wear characteristics of PTFE/PPS-nano-ZrO_2 composites were investigated by a block-on-ring tester under dry friction sliding condition. The worn surfaces, counterpart transfer films and wear debris were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the increase of nanoZrO_2 content could effectively reduce the coefficient of friction and enhance the anti-wear ability of PTFEPPS composites. Especially, the best tribological properties of the composites were obtained when the particle content of nano-ZrO_2 was 10 vol%, the anti-wear performance of composite is 195 times better than that of the unfilled PTFE-PPS composite. Under different conditions, the coefficient of friction of PTFE/PPS-nano-ZrO_2 composites was more affected by the applied load while the wear rate was more affected by the sliding velocity.  相似文献   

20.
Vinylester (bismethacryloxy derivative of a bisphenol-A type EP resin, VE) composites with glass-carbon hybrid fibers (CF-GF) weight fraction of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers’ conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20 °C to 240 °C is less than 1.96%. Funded by the Natural Science Foundation of Hubei Province (No. 2007ABA028)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号