共查询到20条相似文献,搜索用时 78 毫秒
1.
研究不同尺寸工件单机批调度问题,将蚁群算法与模拟退火算法相结合,引入自适应状态转移概率,提出了一种自适应蚁群退火算法AACSA(adaptive ant colony simulated annealing)。该算法利用模拟退火算法实现了一种新的混合信息素更新策略,此外根据停滞次数,动态改变状态转移概率,有效地避免算法陷入停滞以及局部最优,提高算法的性能。仿真实验结果表明,AACSA与蚁群优化算法BACO、模拟退火算法SA、启发式规则BFLPT相比,算法求解的性能更好。 相似文献
2.
基于DNA进化算法求解工件尺寸不同的单机批调度问题 总被引:1,自引:0,他引:1
工件尺寸不同的批调度问题兼具古典调度和批调度的性质,单机环境下该问题的制造跨度为NP完全问题.本文提出一种改进的DNA进化算法对单机问题的制造跨度进行优化,引入分裂、水平选择、变异、垂直选择四种算子,对其中的垂直选择算子做了重新设计,采用概率选择机制对变异个体进行选择,避免进化过程陷入局部最优.在解码时,采用Batch First Fit算法对进化过程产生的解作分批处理.实验中对各类不同规模的算例均进行仿真,结果表明改进的DNA进化算法的有效性. 相似文献
3.
针对流水车间批调度问题,提出一种基于群智能算法的求解思路。结合问题具体特点,给出工件集合的分批策略,设计了将Palmer和Best Fit(BF)分批规则相结合的分批方法;在批排序阶段,提出了一种改进的微粒群算法;在粒子初始生成阶段,通过引入NEH启发式算法改进了粒子的初始化质量;在全局最佳位置更新前,通过变邻域搜索优化了算法的局部搜索能力,避免了算法陷入局部最优。仿真实验表明,改进后的算法优于传统的微粒群算法和NEH启发式算法。 相似文献
4.
采用自由搜索(free search,FS)算法对单机差异工件批调度问题的制作跨度进行优化。针对该问题的离散优化特征以及自由搜索算法的不足,将自由搜索算法与实数编码遗传算法相结合,在标准FS算法的基础上引入两种杂交算子和精英保留策略,提出混合自由搜索(hybrid free search,HFS)算法。仿真实验结果表明,该算法表现出良好的鲁棒性和收敛性,与标准FS、FFLPT以及BFLPT算法相比,HFS算法提高了寻优精度。 相似文献
5.
针对最小化制造跨度的差异工件尺寸单批处理机调度问题,通过将其转化为最小化浪费空间的问题,采用候选集策略构建分批以减少搜索空间,利用基于浪费空间的启发式更新信息素,提出一种改进的最大最小蚁群算法。此外,在算法中还引入了一种局部优化策略,以进一步提高算法的性能。仿真实验结果表明,所提出的算法优于其他几种已有算法,验证了所提出算法的有效性和鲁棒性。 相似文献
6.
在容量不同的平行批处理机环境下, 针对工件带有不同尺寸和机器适用限制的最小化制造跨度的批调度问题, 提出一种有效的蚁群优化算法. 该算法基于解的浪费空间定义启发式信息, 针对机器容量约束提出两种用于构建解的候选集, 从而有效缩小搜索空间, 并引入局部优化方法提高解的质量. 仿真实验结果表明, 所提出算法具有较好的性能, 并且优于已有的其他算法.
相似文献7.
8.
针对考虑批处理机(batch processing machines,BPM)和部分阶段无优先关系的绿色模糊混合流水车间调度问题(energy-efficient fuzzy hybrid flow shop scheduling problem,EFHFSP),提出一种动态人工蜂群(dynamical artificial bee colony,DABC)算法以同时最小化最大模糊完成时间和模糊总能耗.给出基于种群评估的种群裁定方法以在每一代动态决定雇佣蜂种群和跟随蜂种群,并应用了动态雇佣蜂阶段、基于自适应交流的跟随蜂阶段、多样性强化策略以及自适应侦察蜂阶段.最后进行仿真实验, 实验结果表明DABC在求解考虑BPM和部分阶段无优先关系的EFHFSP方面具有较强的优势. 相似文献
9.
差异工件平行机批调度问题的SAGA* 总被引:1,自引:1,他引:1
为了求解差异工件平行机批调度问题,提出了一种模拟退火遗传算法 (simulated annealing genetic algorithm,SAGA)。将模拟退火算法(simulated annealing,SA)的状态转移操作引入基于最优保留的遗传算法(genetic algorithm,GA)中,作为局部搜索算子,以避免算法陷入局部最优,也有效地发挥了SA和GA在局部搜索与全局搜索能力方面的优势。为了解决GA迭代后期适应函数难以区分一些适应度接近的个体这个问题,SAGA分两阶段标定适应函数,在进化后期 相似文献
10.
11.
12.
多种群遗传算法相比遗传算法在性能上能够有所提高,但对具有较多局部最优解的作业车间调度问题,多种群遗传算法仍然难以改善易陷入局部最优解和局部搜索能力差的缺点.因此,提出了一种求解作业车间调度问题的新算法MGA-MBL(multi-population genetic algorithm based on memory-base and Lamarckian evolution for job shop scheduling problem).MGA-MBL在多种群遗传算法的基础上通过引入记忆库策略,不但使子种群间的个体可以进行信息交换,而且有利于保持整个种群的多样性;通过构造基于拉马克进化机制的局部搜索算子来提高多种群遗传算法中子种群进化的局部搜索能力.由于MGA-MBL采用了全局寻优能力较强的模拟退火算法对记忆库中的个体进行优化,从而缓解了多种群遗传算法易陷入局部最优解的问题,并提高了算法求解作业车间调度问题的性能.对著名的benchmark数据进行测试,实验结果证实了MGA-MBL在求解作业车间调度问题上的有效性. 相似文献
13.
14.
单台批处理机总加权完成时间最小化的启发式算法 总被引:1,自引:0,他引:1
批处理机总加权完成时间最小化问题的复杂性目前还没有确定,因此有必要研究该问题的启发式算法.基于对该问题最优解性质的分析,提出了工件分批的最优性质.分别基于WSPT规则和SPT规则对工件进行总排序,利用工件最优分批性质进行分批,提出了两种启发式算法(简称WSPTS和SPTS).为了检验算法的性能.将提出的算法与此问题的基准算法和常规算法进行了比较,结果表明,启发式算法WSPTS要优于其他的算法,而SPTS算法的性能最优. 相似文献
15.
16.
17.
A hybrid estimation of distribution algorithm (EDA) with iterated greedy (IG) search (EDA-IG) is proposed for solving the unrelated parallel machine scheduling problem with sequence-dependent setup times (UPMSP-SDST). For makespan criterion, some properties about neighborhood search operators to avoid invalid search are derived. A probability model based on neighbor relations of jobs is built in the EDA-based exploration phase to generate new solutions by sampling the promising search region. Two types of deconstruction and reconstruction as well as an IG search are designed in the IG-based exploitation phase. Computational complexity of the algorithm is analyzed, and the effect of parameters is investigated by using the Taguchi method of design-of-experiment. Numerical tests on 1640 benchmark instances are carried out. The results and comparisons demonstrate the effectiveness of the EDA-IG. Especially, the bestknown solutions of 531 instances are updated. In addition, the effectiveness of the properties is also demonstrated by numerical comparisons. 相似文献
18.
解决车间生产调度问题的目的不仅仅是为了缩短生产周期,更重要的是为了提高生产效率,降低生产成本。现大部分国有制造企业在车间生产过程中采用的是人工调度,调度时主要依赖于调度经验,调度效率不高且易出错。将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。遗传算法的引入保证了解的全局最优性,仿真后表明了该混合算法的可行性和有效性,且能够有效地提高搜索效率,改进了收敛性能。 相似文献
19.
This paper considers the problem of scheduling a single machine to minimize the number of late jobs in the presence of sequence-independent family set-up times. The jobs are partitioned into families, and a set-up time is required at the start of each batch, where a batch is a maximal set of jobs in the same family that are processed consecutively. We design branch and bound algorithms that have several alternative features. Lower bounds can be derived by relaxing either the set-up times or the due dates. A first branching scheme uses a forward branching rule with a depth-first search strategy. Dominance criteria, which determine the order of the early jobs within each family and the order of the batches containing early jobs, can be fully exploited in this scheme. A second scheme uses a ternary branching rule in which the next job is fixed to be early and starting a batch, to be early and not starting a batch, or to be late. The different features are compared on a large set of test problems, where the number of jobs ranges from 30 to 50 and the number of families ranges from 4 to 10. 相似文献
20.
Dual-Objective Mixed Integer Linear Program and Memetic Algorithm for an Industrial Group Scheduling Problem 下载免费PDF全文
Ziyan Zhao Shixin Liu MengChu Zhou Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》2021,8(6):1199-1209
Group scheduling problems have attracted much attention owing to their many practical applications. This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time, release time, and due time. It is originated from an important industrial process, i.e., wire rod and bar rolling process in steel production systems. Two objective functions, i.e., the number of late jobs and total setup time, are minimized. A mixed integer linear program is established to describe the problem. To obtain its Pareto solutions, we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods, i.e., an insertion-based local search and an iterated greedy algorithm. The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers. Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems. 相似文献