首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NSCT和非负矩阵分解的图像融合方法   总被引:2,自引:0,他引:2       下载免费PDF全文
非采样Contourlet变换(Nonsubsampled Contourlet transform,NSCT)是一种新的多尺度变换,它同时具有方向性、各向异性和平移不变性,能有效地表示图像的边沿与轮廓。非负矩阵分解(Non-negative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数的条件下的一种矩阵分解方法。在非负矩阵分解过程中,适当地选取特征空间的维数能够获得原始数据的局部特征。提出了一种基于NSCT和NMF的图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低通子带系数和各带通子带系数;其次将低通子带系数作为原始数据,选取特征空间的维数为1,利用非负矩阵分解得到包含特征基的低通子带系数;对各带通子带系数采取绝对值最大的原则进行系数选择,得到融合图像的各带通子带系数;最后经过NSCT逆变换得到融合图像。实验结果表明,融合结果优于Laplacian方法、小波方法和NMF方法。  相似文献   

2.
非负矩阵分解作为一种有效的数据表示方法被广泛应用于模式识别和机器学习领域。为了得到原始数据紧致有效的低维数据表示,无监督非负矩阵分解方法在特征降维的过程中通常需要同时发掘数据内部隐含的几何结构信息。通过合理建模数据样本间的相似性关系而构建的相似度图,通常被用来捕获数据样本的空间分布结构信息。子空间聚类可以有效发掘数据内部的子空间结构信息,其获得的自表达系数矩阵可用于构建相似度图。该文提出了一种非负子空间聚类算法来发掘数据的子空间结构信息,同时利用该信息指导非负矩阵分解,从而得到原始数据有效的非负低维表示。同时,该文还提出了一种有效的迭代求解方法来求解非负子空间聚类问题。在两个图像数据集上的聚类实验结果表明,利用数据的子空间结构信息可以有效改善非负矩阵分解的性能。  相似文献   

3.
由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同投影空间,利用在共同投影空间的投影来配准形变目标。为验证该算法的有效性,做了两个实验:2008年5月12日汶川地震前后的SAR图像的配准;唐家山堰塞湖的变化检测。与现有方法进行比较,结果表明该方法能够有效地得到形变目标的共同投影空间,并取得了很好的配准结果;同时,堰塞湖的变化检测也得到了很好的结果。  相似文献   

4.
非负矩阵分解在遥感图像融合中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
非负矩阵分解(Non-negative Matrix Factorization,NMF)算法是在矩阵中所有元素均为非负数的条件下的一种矩阵分解方法,这为矩阵分解提供了一种新的思路。非负矩阵分解方法在图像处理领域具有十分重要的应用意义。介绍了非负矩阵分解的基本思想,讨论了非负矩阵分解用于图像融合的可能性,并实现了基于非负矩阵分解的遥感SAR图像与SPOT图像的融合,NMF能通过观测图像数据找到图像的基矩阵,发现图像的特征,从而最终获得融合图像。不仅对基于NMF的融合方法进行了实验,而且对基于NMF的融合方法和基于小波的融合方法作了对比,并从主观和客观上来评价了这两种融合图像的质量。实验结果表明基于NMF的融合图像与原始的SAR图和基于小波的融合图像相比,能提供更多的信息,更适合作为实时定位的基准图。  相似文献   

5.
图像融合的非负矩阵分解算法   总被引:6,自引:0,他引:6  
提出一种将非负矩阵分解思想用于图像融合的算法.在非负矩阵分解过程中,适当地选取特征空间的维数可以获取原始数据的局部特征.首先分析了使用非负矩阵分解算法提取图像综合特征的原理,并给出了一个可视化实例;将参与融合的图像作为原始数据,特征空间的维数选为1,利用非负矩阵分解得到的特征基包含了原始图像的整体特征,这个特征基图像就是原始图像的融合结果.多类不同模态图像融合的实验结果表明,文中算法比小波变换的方法具有更好的融合效果.  相似文献   

6.
提出一种基于非负矩阵分解NMF(Non-negative Matrix Factorization)的数字水印算法.先通过NMF构造载体图像基于部分表示的系数矩阵,将灰度水印图像嵌入其中;再利用NMF基矩阵作为密钥提取水印.为了说明有效性,该算法与主流的DCT水印算法进行相关比较实验,结果表明该算法同DCT算法一样有效,且在抗剪切和抗滤波性能上优于DCT算法.  相似文献   

7.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。  相似文献   

8.
针对音频检索应用,提出一种使用提升小波变换和非负矩阵分解的稳健音频指纹方案。原始音频按固定长度分帧,对每帧进行小波提升变换得到低频近似分量和高频细节分量;对细节分量作非负矩阵分解得到可近似表示音频子帧的基矩阵和系数矩阵;将系数矩阵各列元素累加,对各列累加和进行量化得到表示分帧音频指纹序列的1 bit信息。实验结果表明该方案对常见音频处理操作具有良好的稳健性,对音频的局部变化不敏感,能较好地区分不同音频,可用于面向对象的音频检索。  相似文献   

9.
基于CVX和非负矩阵分解的图像融合研究   总被引:1,自引:1,他引:1  
图像融合的目的是把来自多传感器图像的互补信息合并成一幅新的图像,以便更好的获取图像的综合信息.基于非负矩阵分解算法的原理,将非负矩阵分解应用到图像融合中,并提出将凸线性规划系统和Matlab相结合,解决非负矩阵分解算法中的最优化问题,使程序变得简单易懂.利用非负矩阵分解算法得到的融合图像包含了源图像的整体特征,实验结果表明,该方法优于其它图像融合方法.  相似文献   

10.
非负矩阵分解方法是基于局部特征的特征提取方法,已经成功用于人脸识别。研究基于非负矩阵分解的人脸图像识别的改进算法是一个有重要意义的研究课题。采用二维非负矩阵分解方法(2DNMF)和对角非负矩阵分解方法(DiaNMF),并且使用正交的基矩阵进行Matlab实验。实验结果表明,以上改进措施能够有效提高人脸图像识别的正确率。  相似文献   

11.
为了在语音转换过程中充分考虑语音的帧间相关性,提出了一种基于卷积非负矩阵分解的语音转换方法.卷积非负矩阵分解得到的时频基可较好地保存语音信号中的个人特征信息及帧间相关性.利用这一特性,在训练阶段,通过卷积非负矩阵分解从训练数据中提取源说话人和目标说话人相匹配的时频基.在转换阶段,通过时频基替换实现对源说话人语音的转换.相对于传统方法,本方法能够更好地保存和转换语音帧间相关性.实验仿真及主、客观评价结果表明,与基于高斯混合模型、状态空间模型的语音转换方法相比,该方法具有更好的转换语音质量和转换相似度.  相似文献   

12.
胡学考  孙福明  李豪杰 《计算机科学》2015,42(7):280-284, 304
矩阵分解因可以实现大规模数据处理而具有十分广泛的应用。非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种在约束矩阵元素为非负的条件下进行的分解方法。利用少量已知样本的标注信息和大量未标注样本,并施加稀疏性约束,构造了一种新的算法——基于稀疏约束的半监督非负矩阵分解算法。推导了其有效的更新算法,并证明了该算法的收敛性。在常见的人脸数据库上进行了验证,实验结果表明CNMFS算法相对于NMF和CNMF等算法具有较好的稀疏性和聚类精度。  相似文献   

13.
针对探地雷达(ground penetrating radar,GPR)采集数据时会产生高频杂波影响地下目标自动识别的问题。提出了一种基于变分贝叶斯的GPR图像非负矩阵分解方法(probability nonnegative matrix factorization,PNMF)。该方法使用变分贝叶斯模型对非负矩阵分解的基矩阵和系数矩阵进行近似推理,得到杂波成分的低秩矩阵表示,进而将杂波从图像中分离出来。实验过程采用模拟和实测数据进行对比分析,通过信噪比和视觉质量结果验证了PNMF对杂波有较好的抑制作用,具有较好的鲁棒性。  相似文献   

14.
姜伟  杨炳儒  隋海峰 《计算机科学》2010,37(12):211-214
非负矩阵分解是一种新的基于部分学习的矩阵分解方法,反映了人类思维中局部构成整体的概念。算法只将非负矩阵近似地分解成两个非负矩阵的积,忽略了数据几何结构和判别信息。提出了一个局部敏感非负矩阵分解降维算法来克服这一缺点。该算法既保持了数据非负性,又保持了数据的几何结构和判别信息。构造了一个有效的乘积更新算法并且在理论上证明了算法的收敛性。ORL和Yale人脸数据库实验表明该算法性能超过许多已存在的方法。  相似文献   

15.
传统的非平滑约束的非负矩阵分解算法(nsNMF)在处理高光谱数据时,存在对初始值敏感、容易陷入局部最优值等缺陷。为此,提出一种基于粒子群优化(PSO)的nsNMF算法。采用传统nsNMF算法迭代的结果作为初始值,以避免PSO的盲目搜索。通过PSO搜索端元光谱矩阵,利用nsNMF算法更新端元光谱矩阵和丰度矩阵,以缩小搜索空间,降低计算复杂度,避免陷入局部最优。在合成数据集和真实数据集上的实验结果表明,与传统nsNMF算法相比,该算法能获得更好的全局最优解,端元光谱和丰度值更接近真实值。  相似文献   

16.
《计算机工程》2018,(1):35-43
在大规模时序文档集中,异同话题缺乏从时序文档集中识别跟踪分析话题随时间变迁的能力。为此,提出一种面向时序文档语料库的话题变迁检测方法。该方法从时序文档语料库中发现相似话题和异同话题。利用改进的联合非负矩阵分解算法,从多个数据集中提取话题集合。为避免引入噪声话题,计算所有话题的话题熵,以获取优质话题,并通过运用词云和趋势图来分析话题变迁趋势。在20Newsgroups和LTN2011数据集上的实验结果表明,该方法可以有效地从时序文档集中发现异同话题,且提取的话题效果好、准确率高。  相似文献   

17.
图像散列算法是一种把数字图像映射为一个基于内容的简短二进制比特串的技术,它具有鲁棒性、安全性、紧凑性和单向性等特点,已被广泛应用于图像鉴别与图像识别领域中。本文提出一种基于分块压缩感知的鲁棒图像散列算法,其设计利用了压缩感知采样阶段的计算保密及线性运算的特点。该算 法通过对图像进行分块,利用压缩感知理论在密钥的控制下将图像块随机投影为一个测量值向量序列,并把每个测量值向量量化为一个比特,得到一个长度可由分块策略调整的二进制散列值。实验结果表明,本文算法在鲁棒性、安全性和运算速度等方面具有良好的性能。  相似文献   

18.
非负矩阵分解(NMF)把给定的数据矩阵分解成低维的非负基矩阵和对应的系数矩阵,两者之间存在必然联系。为此,研究者将基矩阵转换为系数矩阵的投影,进一步提高分解效率。但是该方法无法处理非线性数据,核函数的引入部分解决了此问题,却同时导致核函数参数选择的问题。基于多核学习理论,提出了一种多核学习的投影非负矩阵分解(MKPNMF)算法,该算法有效地避免了核函数参数选择的问题,同时提高了学习性能。在实际人脸数据上的实验结果表明,MKPNMF较已有的NMF类方法具备明显的性能优势。  相似文献   

19.
姜伟  陈耀  杨炳儒 《计算机科学》2014,41(3):272-275
经典的非光滑非负矩阵分解方法只能发现数据中的全局统计信息,对于非线性分布数据无能为力,而流形学习方法在探索高维非线性数据集真实几何结构方面具有明显优势。鉴于此,基于流形正则化思想,提出了一种新颖的基于流形正则化的非光滑非负矩阵分解方法。该方法不仅考虑了数据的几何结构,而且对编码系数矩阵和基矩阵同时进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘积更新算法,并在理论上证明了算法的收敛性。标准数据集上的实验表明了MRnsNMF的有效性。  相似文献   

20.
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号