首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了制备PZT厚膜的一种新的旋转涂覆方法.采用0-3复合法将PZT溶胶与PZT纳米粉混合形成浆料,并与PZT溶胶交替涂覆在Pt/Ti/SiO2/Si衬底上,使PZT厚度达2μm,并且使PZT表面质量得到了改善.利用XRD和SEM对PZT厚膜的组织和结构进行了表征.得到的薄膜无裂纹,结晶和表面平整度良好,可用于MEMS中微型传感器和微型驱动器的制作.  相似文献   

2.
Some commercial thick film resistors with sheet resistivities from 1 kohm/sq. up to 1 Mohm/sq. were evaluated for strain gauge applications. Temperature coefficients of resistivity, noise indices and gauge factors (GFs) were measured. For the same resistor series GFs and noise indices increase with increasing sheet resistivity. However, both GFs and noise indices are different for resistors with the same nominal sheet resistivity but from different resistor series. The results indicated that the microstructure rather than the different chemical composition of the conductive phase in thick film resistors is the primary reason for the different gauge factors.  相似文献   

3.
The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening is currently under way to identify resist platforms that can support the demanding specifications required for EUV lithography. Current screening processes would benefit from the development of metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to known uncertainties in exposure tool aberrations and focus control. For an implementation at EUV wavelengths, we report aberration and focus-limited error bars in extracted resolution of approximately 1.25 nm rms for both metrics, making them attractive candidates for future screening and downselection efforts.  相似文献   

4.
5.
Abstracts are not published in this journal This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Hu Wang  Fan Ye  Enying Li  Guangyao Li 《工程优选》2016,48(8):1432-1458
Efficient global optimization (EGO) uses the surrogate uncertainty estimator called expected improvement (EI) to guide the selection of the next sampling candidates. Theoretically, any modelling methods can be integrated with the EI criterion. To improve the convergence ratio, a multi-surrogate efficient global optimization (MSEGO) was suggested. In practice, the EI-based optimization methods with different surrogates show widely divergent characteristics. Therefore, it is important to choose the most suitable algorithm for a certain problem. For this purpose, four single-surrogate efficient global optimizations (SSEGOs) and an MSEGO involving four surrogates are investigated. According to numerical tests, both the SSEGOs and the MSEGO are feasible for weak nonlinear problems. However, they are not robust for strong nonlinear problems, especially for multimodal and high-dimensional problems. Moreover, to investigate the feasibility of EGO in practice, a material identification benchmark is designed to demonstrate the performance of EGO methods. According to the tests in this study, the kriging EGO is generally the most robust method.  相似文献   

7.
Different geometries for source excited X-ray fluorescence analysis systems are compared concerning their efficiency. Results of calculations for the geometric excitation-detection efficiency are presented for the annular and central source geometries, as well as for the here proposed receded source geometry, as a function of D/R (detector window-to-target distance/detector radius). For both point and finite size sources the new receded source geometry is found to be superior, reaching efficiencies that are in general a factor of three better than those for the annular source.  相似文献   

8.
An electroless phosphorus nickel-carbon nanotube (Ni-P-CNT) nanocomposite film synthesis and related process for microelectromechanical systems device fabrication have been successfully developed and presented in this paper. With a special acid oxidative method, a well-dispersed nickel-CNT's colloidal solution has been produced without any aggregation, which is very suitable for microstructure fabrication. The nanoindentation measurement indicates that the Young's modulus and hardness of the Ni-P-CNT's nanocomposite film plated in the bath with 0.028-g/L CNTs can greatly increase up to 665.9 and 28.9 GPa, respectively, which are approximately four times larger than that of pure nickel. Moreover, the content of CNTs in the Ni-P-CNT's films is measured by an elemental analyzer. Via the electrical resistivity measurement using a four-point probe, it is found that the electrical property of the nanocomposite film can be well characterized using a Maxwell-Wagner model for a two-phase mixture. The performance improvements of the electrothermal microactuator made of the nanocomposite, including device strength and power efficiency, have been proven similar to the actuator made of the Ni-diamond composites by electrolytic plating by Tsai et al., but with more efficiency and higher strength than the Ni-diamond device does.  相似文献   

9.
《Materials Letters》2004,58(17-18):2306-2309
The Young's modulus of an electroplated nickel (Ni) thin film suitable for microelectromechanical applications has been investigated as a function of process variables: the plating temperature and current density. It was found that the Young's modulus is approximately 205 GPa at plating temperatures less than 60 °C, close to that of bulk Ni, but drastically drops to approximately 100 GPa at 80 °C. The inclusion of ammonium and sulphate ions by hydrolysis is believed to be responsible for the sharp drop. The Young's modulus of 205 GPa is for a Ni film plated at J=2 mA/cm2 and it decreases to 85 GPa as the plating current density is increased to 30 mA/cm2. The results imply that at low current density, the plating speed is slow and there is sufficient time for the as-plated Ni atoms to rearrange to form a dense coating. At high currents, the plating speed is high, and the limited mass transport of Ni ions leads to a less dense coating.  相似文献   

10.
In more than 80% of the worldwide photovoltaic (PV) modules, mostly very fragile and 200 μm thick, crystalline silicon solar cells are encapsulated into ethylene-vinyl acetate (EVA) foils, which bond the module components together, provide physical protection, electrical insulation and a barrier for moisture ingress. The understanding of what can happen with EVA during its transport, storage and lamination process is necessary to optimize the quality of the PV module for its long exposure to outdoor weather conditions. Achieving a proper cross-link density of over 70%, it is essential to overcome the cold flow of EVA and to make the module durable. In this work, the feasibility of the use of differential scanning calorimetry (DSC) compared with the solvent extraction (SE) method by toluene were evaluated in order to provide structural information on the EVA curing kinetics and the cross-link density. DSC tests were performed on a DTA DuPont1600 tester. The temperature range for the test was from −50 °C to 200 °C, with the heating rate of 10 °C/min, and the endothermic and exothermic peaks were evaluated. Toluene solvent extractions were performed on the same set of samples that were analyzed by DSC. The measured cross-link density shows a direct dependence on the pre-lamination conditions of EVA, which is in good agreement with the data obtained with the DSC method.  相似文献   

11.
Five different welded joints frequently used in steel bridges have been selected to investigate the accuracy and applicability of three fatigue assessment methods. The first method, also categorised as the global method, is the nominal stress method, while the more advanced methods are the hot spot and the effective notch stress methods. Solid element based finite element models for welded bridge details were created by following the modelling requirements of each fatigue assessment method. A statistical evaluation based on the results of the finite element analyses and the fatigue test data collected from the literature was performed to determine the mean and characteristic fatigue strength. In addition, the standard deviation for each data series was also determined to conclude how well each method describes the fatigue strength of each welded detail. A method with a lower standard deviation is regarded as more accurate. Moreover, the evaluated results from each method were compared with the recommended fatigue strength values in the Eurocode 3 (EN 1993-1-9:2005) and IIW codes. In the light of the test results in this study, it appears that the codes are in reasonable agreement with the test data, even though a few examples of the opposite occurred. The conclusion based on the revised results in this article indicates that the nominal stress method yields satisfactory results, despite its simplicity. When considering the effort involved in creating FE models for numerical analysis, it seems clear that the choice of the nominal method is fairly acceptable.  相似文献   

12.
In this research work a comparative study of pure and In-doped ZnO polycrystalline thin films was made successfully deposited onto fused silica by reactive e-beam thermal evaporation at 300 °C. The structural and optical properties were assessed by employing X-ray diffraction (XRD), Raman spectroscopy, photoluminescence atomic force microscopy and spectroscopic ellipsometry (SE). XRD pattern, EDS and the principal Raman phonon band at 438 cm?1 confirmed purely polycrystalline wurtzite structured ZnO and incorporation of In at the Zn lattice sites. In studying the structural properties, the characteristic (002) plane was used as the focal point. Structural analysis showed that with In incorporation, the crystallites exhibited a preferential orientation along (002) c-plane perpendicular to the substrate. With In-doping (3.9 at.%), the optical band-gap increased and compressive strains were developed within the film. The prominent optical phonon mode at 587 cm?1 presented a low Raman intensity for the sample prepared in the oxygen environment and was assigned to oxygen vacancies. The film thickness and optical constants [refractive index (n), extinction coefficient (k)] were determined by SE study using Cauchy curve fitting model. PL emission spectra showed strong UV emission at 370–373 nm and a feeble visible (green) emission at 512–520 nm. The UV emission showed Stoke’s shift with incorporation of In at the lattice sites as the emitted energy is lower that the band-gap energy of ZnO. The observed properties showed that ZnO can be made significantly important an electronic and optical material for various optoelectronic applications by incorporating In as the dopant material.  相似文献   

13.
Previous in vivo studies on biodegradable magnesium alloys for orthopedic implant applications showed the need to improve early-stage bioactivity. Introducing bioactive particles into a magnesium alloy to form a metal matrix composite (MMC) represents an effective way to enhance the bioactivity of the alloy. In this study, composites with the ZK30 alloy as the matrix and the 45S5 bioactive glass (BG) as the reinforcement phase were fabricated using a semi-solid casting (SSC) method and a powder metallurgy (P/M) method. The SSC and P/M biocomposites with the same weight percents of bioactive glass particles were compared. Optical microscopy showed homogeneously dispered BG particles in the SSC and P/M composites. SEM and EDX analyses confirmed the retention of the morphological characteristics and composition of BG particles in the composites. However, the SSC composites exhibited micro-porous structures, while the P/M composites had nearly fully densified structures. As compared with the ZK30 matrix, the SSC composites exhibited significantly higher degradation rates, while the P/M composites possessed lower degradation rates. On the surface of all the composites, accelerated deposition of Ca and P ions occurred during immersion in the cell culture medium, indicating an improved surface bioactivity of the composites. The P/M method was found to be advantageous over the SSC method and could yield magnesium-matrix composites with enhanced corrosion resistance and early-stage bioactivity needed for biodegradable bone implants.  相似文献   

14.
Through the comparison of two carbon fiber-reinforced polymers (Epoxy and Polyphenylene Sulfide – PPS), this work was aimed at investigating the influence of different fire conditions on the high temperature tensile mechanical behavior. In order to better understand the influence of matrix nature on post-fire properties, the fiber – or matrix-dominated mechanical responses of laminates have been investigated by means of quasi-isotropic or angle-ply stacking sequences. Compared to carbon/PPS laminates, the mechanical properties of carbon/Epoxy laminates are higher in the virgin state (no prior fire exposure). The analysis of the post fire tensile properties shows that prior severe fire exposures are more detrimental to carbon/Epoxy than to carbon/PPS laminates. Although the PPS matrix behavior is highly ductile at a test temperature higher than glass transition temperature, it clearly appears that the decrease in the tensile properties laminates of PPS-based composites is much slower than the one observed in carbon/Epoxy laminates subjected to severe prior fire conditions. Provided the heat flux is high enough to lead to the outset of pyrolysis, PPS-based composites yield higher amounts of char, whose formation retains the structural integrity of fire-damaged composites.  相似文献   

15.
The rapidly growing wireless industry needs new high performance materials to build low loss, high density, and thermally stable integrated packages. Applications include automotive safety, control, global positioning system (GPS) mapping and entertainment, multifunctional portable phones, video and data transmission through wireless local area network (WLAN) etc. Recently, low temperature co-fired ceramics (LTCC) technology is referred as a key approach for smart packaging. Although its use has been initiated in the telecommunication field due to the excellent dielectric properties of the LTCC tapes, its application areas have been diversified recently. In the present work, the attempt has been made towards the development of thick film silver conductor composition compatible with available LTCC tapes (DuPont DP-951AX). The physical, microstructural, and electrical properties of the pastes prepared with different compositions are presented in this paper.  相似文献   

16.
In the present work, we report the deposition of high resistivity c-axis oriented ZnO films by RF magnetron sputtering. The deposition parameters such as RF power, target-to-substrate spacing, substrate temperature, and sputtering gas composition affect the crystallographic properties of ZnO films, which were evaluated using XRD analysis. The self-heating of the substrate in plasma during film deposition was investigated and we report that highly “c-axis oriented” ZnO thin films can be prepared on different substrates without any external heating under optimized deposition parameters. The post-deposition annealing of the film at 900 °C for 1 h in air ambient increases the intensity of (002) peak corresponding to c-axis orientation in addition with the decrease in full width at half maxima (FWHM). Bond formation of ZnO was confirmed by FTIR analysis. Grains distribution and surface roughness have been analyzed using SEM and AFM. The DC resistivity of the films prepared under different deposition conditions was measured using MIS/MIM structures and was found to be in the range of 1011–1012 Ω cm at low electric field of 104 V/cm. The ZnO film of 1 μm thickness has transmittance of over 85% in the visible region. Applications of these films in MEMS devices are discussed.  相似文献   

17.
Pyroelectric coefficient measurements were made at various temperatures for poled and unpoled samples of PVDF films. Samples were produced using the spin-coating technique onto glass substrates. Experiments were made using the quasi-static technique. PVDF samples were poled at various electric field strengths and the relation between poling field strength and the pyroelectric coefficient was investigated. The effect of the poling temperature was also studied. The maximum pyroelectric coefficient was obtained for a poling temperature of 340 K and for a poling field strength of . Dielectric permitivity and dielectric loss measurements were also performed in the 125–375 K temperature range.  相似文献   

18.
The aim of this work is to characterize the strength properties of polycrystalline silicon (polysilicon) with the use of tensile and bending test specimens. The strength of thin polysilicon films with different geometry, size and stress concentrations has been measured and correlated with the effective size of the specimen and its stress distribution. The test results are evaluated using a probabilistic strength approach based on the weakest link theory with the use of STAU software. The use of statistic methods of strength prediction of polysilicon test structures with a complex geometry and loading based on test values for standard material tests specimen has been evaluated.  相似文献   

19.
An optimization study on the sputtering of Cr/Au thin film for diaphragm-based MEMS applications is presented. The effects of the film thickness, process pressure and process power on the residual stress of the film are investigated. A low-stress silicon nitride diaphragm-based device characterization platform is fabricated to study the influence of the Cr/Au film stress on the diaphragm compliance. The fabricated devices are characterized by measuring the capacitance change under a bias voltage from 0 to 40 V. For the 8-µm and 10-µm air gap device characterization platforms, the largest capacitance changes of 5.1% and 4.3%, respectively, occur at a compressive film stress of − 200 MPa. A large capacitance change indicates a more sensitive diaphragm, which is desired in pressure sensor design.  相似文献   

20.
A study of the physical characteristics of baked carbon mixes employing calcined petroleum coke, coal-tar pitch coke, metallurgical coke and anthracite coal has been made to explore their relative suitability and area of application. It is revealed that petroleum coke and pitch coke lead to a carbon product of almost the same density and electrical resistivity. However, the crushing strength of the product employing pitch coke is 1 1/2 times that of the one employing petroleum coke. The carbon product produced from the metallurgical coke is found to be slightly inferior in respect of density and electrical resistivity and slightly superior in respect of crushing strength when compared with that made from petroleum coke. The use of anthracite coal results in a carbon product of significantly lower density and much higher electrical resistivity than that of the product using the petroleum coke. However, the strength of the anthracite coal-based carbons is found to be nearly double that of the petroleum coke-based carbons. Thus, the significance of the present study lies in the fact that the above findings help one to estimate a possible filler composition for a carbon product possessing the desirable critical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号