首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
殷锦捷  王亚鹏 《上海塑料》2005,(4):17-19,34
主要对不同配比的PE、聚乙烯-乙酸乙烯酯(EVA)树脂进行共混改性研究.使用正交实验法设计、运用方差分析法分析,测试了PE/EVA共混物的拉伸强度和屈服强度,使用差示扫描量热法(DSC)研究了PE/EVA的相容性,使用扫描电镜(SEM)二次电子成像分析试样液氮脆断的断口.从而讨论分析EVA在PE/EVA共混物当中的含量、挤出机的螺杆转速以及挤出机出口模的模温对PE/EVA共混物力学性能的影响.  相似文献   

2.
专利文摘     
正具有供料液压调节功能的EVA胶膜挤出机本发明涉及一种具有供料液压调节功能的EVA胶膜挤出机,属于塑料的挤出成型技术领域。该E VA胶膜挤出机包括主机筒、设于主机筒内的挤出螺杆和用于驱动挤出螺杆转动的驱动电机,主机筒的进料端设有供料斗,供料斗底部制为锥顶向下的锥形且制有位于锥顶处的开口,主机筒的出料端设有模头,  相似文献   

3.
采用在材料熔融挤出共混过程中提高双螺杆挤出机螺杆转速的方法,研究了较高螺杆转速条件下双螺杆挤出机的机械剪切应力对丙烯腈-丁二烯-苯乙烯共聚物/乙烯-乙酸乙烯共聚物(ABS/EVA)共混材料力学性能的影响。结果表明,双螺杆挤出机的高剪切应力可促进EVA颗粒的分散和界面结合力的增强。在220℃的挤出温度下,当螺杆转速由120 r/min提高至1 200 r/min时,ABS/EVA共混材料的缺口冲击强度由14.3 kJ/m2提高至16.6 kJ/m2。  相似文献   

4.
采用材料在熔融挤出共混过程中提高双螺杆挤出机螺杆转速的方法,研究了较高螺杆转速条件下双螺杆挤出机的高剪切应力、不同弹性体(SEBS、POE、EVA、NBR)等对ABS材料力学性能的影响.结果表明:双螺杆挤出机的高剪切应力可促进弹性体颗粒的分散和界面结合力的增强,引起共混材料力学性能的改善;NBR、EVA等弹性体有利于ABS材料韧性的提高,POE、EVA等弹性体有利于ABS材料加工流动性的改善.在220℃的挤出温度下,当螺杆转速由240 r/min提高至1200 r/min时,其中ABS/NBR(质量比90/10)共混材料的缺口冲击强度由22.1 kJ/m2提高至28.8 kJ/m2,提高了30%,比纯ABS树脂提高一倍.  相似文献   

5.
《塑料科技》2017,(3):30-33
通过熔融挤出共混的方法,选用乙烯-乙酸乙烯酯共聚物(EVA)增韧改性聚甲醛(POM)。分别研究了EVA用量和工艺参数(包括挤出机螺杆转速、加工温度以及注射压力)对POM/EVA共混物力学性能的影响。结果表明:EVA能有效地增韧改性聚甲醛,当EVA用量为25%时,缺口冲击强度由7.6 k J/m~2提高到22.9 k J/m~2;当EVA用量在15%时,POM/EVA体系的综合力学性能最好;加工工艺参数对体系的力学性能有一定的影响,当螺杆转速为200 r/min,加工温度在150~180℃,注射压力为8 MPa时,体系的力学性能最好。  相似文献   

6.
水镁石纳米纤维/EVA复合材料的力学性能与阻燃性能研究   总被引:3,自引:0,他引:3  
采用化学作用与机械力结合的方法,将天然水镁石剥离到纳米单纤维级,并采用有机分散剂将其均匀分散,使其可以采用常规的工业挤出设备(如双螺杆挤出机)制备水镁石纳米纤维/EVA复合材料。在这种纳米复合材料中,纤维分散均匀,与EVA高分子结合牢固,对EVA的力学性能改善明显,为水镁石作为阻燃剂在高分子材料中的广泛应用提供了一种方便可行的方案。  相似文献   

7.
以1,1-二叔丁基过氧基-3,3,5-三甲基环己烷(Luperox231)/N,N’-间苯撑双马来酰亚胺(HVA-2)为硫化体系,采用反应挤出动态硫化法制备了乙烯-乙酸乙烯酯共聚物(EVA)/聚甲醛(POM)动态硫化热塑性弹性体。结果表明,EVA/POM动态硫化热塑性弹性体的综合力学性能明显改善,拉伸强度可达到12 MPa左右,但断裂伸长率较低;螺杆转速和挤出机加工温度对EVA/POM动态硫化热塑性弹性体的力学性能有影响,为制备性能良好的EVA/POM动态硫化热塑性弹性体,螺杆转速设定为250r/min,挤出机加工温度为145~175℃;Luperox231用量的增加使动态硫化热塑性弹性体的拉伸强度和断裂伸长率、永久变形以及肖D硬度均下降,而HVA-2用量的增加使动态硫化热塑性弹性体的拉伸强度和永久变形呈先降低后升高的趋势。  相似文献   

8.
油气管道接口热收缩带用固定片的研制   总被引:2,自引:0,他引:2  
利用聚合物共混技术,将一定量的EVA460,EVA150和丁基橡胶熔融混合,再将混合物熔融接枝马来酸酐(MAH),最后与一定量的二聚脂肪酸聚酰胺共混制成了高温高粘型热熔胶。用挤出机将其挤成胶膜后与交联聚乙烯基材,大孔径玻璃纤维网热复合制成固定片。经现场试验证明:固定片固定效果良好。  相似文献   

9.
将预先配制好的膨胀阻燃剂[IFR,聚磷酸铵(APP)/季戊四醇(PER)/硼酸锌(ZB)]与线性低密度聚乙烯(LLDPE)/乙烯-醋酸乙烯共聚物(EVA)进行混和,采用双螺杆挤出机,制备阻燃LLDPE/EVA复合材料。用氧化钙(CaO)、天然石墨(NG)、膨胀石墨(EG)对阻燃LLDPE/EVA复合材料进行改性。结果表明:APP/PER/ZB具有明显的膨胀阻燃作用,同时,发现CaO,NG,EG与IFR有协同作用,提高了膨胀炭层的热稳定性和阻燃效率。  相似文献   

10.
计建洪 《天津化工》2012,26(4):47-49
介绍了一种由乙烯-醋酸乙烯共聚物(EVA)与无纺布及热塑性薄膜制备成复合材料的生产方法.将EVA粒子倒入加料斗中经挤出机挤压与无纺步粘合,再通过滚筒使之与热塑性薄膜覆合,最后通过裁边机与裁切机的裁剪生产出成品.本文主要介绍的是复合鞋材的生产工艺过程以及在生产过程中需要注意的事项.  相似文献   

11.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

12.
Nylon 1010 blends with ethylene–vinyl acetate copolymer (EVA) and maleated ethylene–vinyl acetate (EVA‐g‐MAH) were prepared through melt blending. The vinyl acetate (VA) content and viscosity of EVA significantly affected the notched impact strength of nylon/EVA/EVA‐g‐MAH (80/15/5) blends. The nylon/EVA/EVA‐g‐MAH blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content in EVA ranged from 28 to 60 wt%. The effect of VA content on the notched impact strength of blends was related to the glass transition temperature for EVA with high VA content and crystallinity for EVA with low VA content. For nylon blends with EVA with the same VA content, low viscosity of EVA led to high notched impact strength. Fracture morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends showed that blends with ductile fracture behavior usually had large matrix plastic deformation, which was the main energy dissipation mechanism. A relationship between the notched impact strength and the morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends was well correlated by the interparticle distance model. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
In this article, we discuss the radiation effects of high‐density polyethylene (HDPE)/ethylene–vinyl acetate (EVA) copolymer blends. In comparison with the low‐density polyethylene/EVA blends, the EVA content in the HDPE/EVA blends had a lower enhancement effect on radiation crosslinking by γ‐ray irradiation in air. The phenomenon is discussed with the compatibility, morphology, and thermal properties of HDPE/EVA blends. The HDPE/EVA blends were partly compatible in the amorphous region, and radiation crosslinking of the HDPE/EVA blend was less significant, although increasing the amorphous region's content of the HDPE/EVA blends and the vinyl acetate content of EVA were beneficial to radiation crosslinking. The good compatibility was a prerequisite for the enhancement effect of EVA on the radiation crosslinking of the polyethylene/EVA copolymer. The radiation crosslinking and the degradation mechanism of HDPE/EVA blends were examined quantitatively by a novel method, the step analysis process of irradiated HDPE/EVA blends with a thermal gravimetric analysis technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 553–558, 2002  相似文献   

14.
Mixing torque, morphology, tensile properties and swelling studies of natural rubber/ethylene vinyl acetate copolymer blends were studied. Two series of unvulcanized blends, natural rubber/ethylene vinyl acetate (SMRL/EVA) copolymer blend and epoxidized natural rubber (50% epoxidation)/ethylene vinyl acetate (ENR-50/EVA) copolymer blend were prepared. Blends were prepared using a laboratory internal mixer, Haake Rheomix polydrive with rotor speed of 50 rpm at 120°C. Results indicated that mixing torque value and stabilization torque value in ENR-50 blends are lower than SMRL blends. The process efficiency of ENR-50/EVA blends is better due to less viscous nature of the blend compared to SMRL/EVA blends as indicated in stabilization torque graph. Tensile properties like tensile strength, M100 (modulus at 100% elongation) and E b (elongation at break) increase with increasing EVA fraction in the blend. At the similar blend composition, ENR-50 blend shows better tensile properties than SMRL blends. In oil resistance test, swelling percentage increased with immersion time and rubber composition. At a similar immersion time, ENR-50 blends exhibit better oil resistance compared to SMRL blends. Scanning electron microscopy (SEM) of tensile fractured surface indicated that EVA/ENR-50 blends need higher energy to cause catastrophic failure compared to EVA/SMRL blends. In etched cryogenically fractured surface, size and distribution of holes due to extraction of rubber phase by methyl ethyl ketone (MEK) were studied and holes became bigger as rubber composition increased due to coalescence of rubber particle.  相似文献   

15.
Several hot-melts (HMAs) were prepared by using blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers - EBA/EVA. HMAs were prepared with mixtures of EVA copolymers with 18 (EVA18) and 27 (EVA27) wt% vinyl acetate contents and EBA copolymer with 27 wt% n-butyl acrylate, polyterpene resin and mixture of microcrystalline and Fischer-Tropsch waxes. HMAs made with EBA/EVA blends showed lower viscosities and reduced shear thinning than the ones made with EBA or EVA due to differences in compatibility, but both the set time and the open time were not affected as they depended mainly on the wax nature and amount. The increase of the vinyl acetate (VA) content in EVA copolymer reduced the crystallinity of the EBA/EVA blends. Even EBA copolymer was more compatible with EVA27 than with EVA18 (the α- and β-transitions shown in DMTA plots were closer) and the compatibility did not vary with the EBA content in the blends. The addition of polyterpene resin and the mixture of waxes decreased the compatibility of the EBA/EVA blends, the higher compatibility was observed for the HMAs made with only one copolymer. The tack of the HMAs depended on their EBA/EVA contents, EBA/EVA27 HMAs showed broader temperature interval with higher tack, while the tack of EBA/EVA18 HMAs blend decreased and the temperature interval with tack was shortened and shifted to lower temperatures. Adhesion to polypropylene film was improved in HMAs made with 75 wt% EBA/25 wt% EVA18 and 50–75 wt% EBA/50-25 wt% EVA27. The adhesion to aluminum film of EBA or EVA hot melts was improved only in the joints made with EBA/EVA 27 HMAs, more noticeably when they contained higher EBA content.  相似文献   

16.
Blends of poly(vinyl chloride) (PVC) with different copolymers have been studied to obtain a plasticized PVC with improved properties and the absence of plasticizer migration. The copolymers used as plasticizers in the blends were acrylonitrile butadiene rubber, ethylene vinyl acetate (EVA), and ethylene-acrylic copolymer (E-Acry). Blends were studied with regard to their processing, miscibility, and mechanical properties, as a function of blend and copolymer composition. The results obtained were compared with those of equivalent compositions in the PVC/dioctyl phthalate (DOP) system. Better results than PVC/DOP were obtained for PVC/acrylonitrile butadiene rubber blends. The plasticizing effect on PVC of EVA and E-Acry copolymers was similar to that of DOP. It is shown that crosslinking PVC/E-Acry blends or increasing the vinyl acetate content in PVC/EVA blends, are alternatives that can increase the compatibility and mechanical properties of these blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1303–1312, 2000  相似文献   

17.
The effect of epoxidized natural rubber (ENR) or polyethylene acrylic acid (PEA) as a compatibilizer on properties of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends was studied. 5 wt.% of compatibilizer was employed in EVA/SMR L blend and the effect of compatibilizer on tensile properties, thermal properties, swelling resistance, and morphological properties were investigated. Blends were prepared by using a laboratory scale of internal mixer at 120°C with 50 rpm of rotor speed. Tensile properties, thermal properties, thermo-oxidative aging resistance, and oil swell resistance were determined according to related ASTM standards. The compatibility of EVA/SMR L blends with 5 wt.% of compatibilizer addition or without compatibilizing agent was compared. The EVA/SMR L blend with compatibilizer shows substantially improvement in tensile properties compared to the EVA/SMR L blend without compatibilizer. Compatibilization had reduced interfacial tension and domain size of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends.  相似文献   

18.
Ethylene vinyl acetate (EVA) copolymer with varying vinyl acetate (VAc) content, viz. 18%, 28% and 40% has been hydrolyzed using alcoholic NaOH solution. Fourier Transform Infrared Spectroscopy (FTIR) analyses of hydrolyzed polymer showed the presence of both OH group and acetate group indicating that the EVA has been partially hydrolyzed. Differential Scanning Calorimeter (DSC) and Thermo Gravimetric Analyzer (TGA) of EVA and hydrolyzed EVA showed large difference in melting and decomposition temperature, respectively. Hydrolyzed EVA showed higher tensile strength and elongation at break compared to corresponding EVA. Blends of different grades of EVA and ethylene vinyl alcohol (EVAl) with low density polyethylene (LDPE) were applied on grit blasted mild steel surface by flame spray technique. FTIR analysis of blends before and after coating showed no degradation during flame spray. Measurement of adhesion strength of these coating showed that adhesion strength increased on hydrolysis of EVA.  相似文献   

19.
Ethylene vinyl acetate (EVA) has been used as a compatibilizer for (natural rubber)/(recycled acrylonitrile‐butadiene rubber) (NR/NBRr) blends, vulcanized by sulfur. EVA offers excellent heat, ozone, and weather resistance, whereas the vinyl acetate groups provide oil resistance to the blend. It exhibits good tear resistance and may be crosslinked. However, EVA exhibits poor low‐temperature flexibility. NBR gloves have excellent resistance to punctures, tears, and many types of chemicals, while NR has good physical and mechanical properties. NR/NBRr blends were prepared with various compositions with the EVA content fixed. Tensile properties, hardness, and swelling behavior tests were performed to determine the compatibility of NR/NBRr blends in the presence of EVA. Results indicated that incorporation of EVA into NR/NBRr blends improved tensile strength, modulus, and elongation at break compared with NR/NBRr blends without EVA. The improvement in hardness and reduction in resilience on compatibilization are due to an increase in crosslink density, which gives NR/NBRr blends better swelling resistance. Scanning electron microscopy of the fracture surfaces indicates that, with the addition of EVA in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving the compatibility of NR/NBRr blends. J. VINYL ADDIT. TECHNOL., 23:135–141, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
The effect of electron beam irradiation at different radiation doses (2, 5, 10, 15, and 20 Mrad) on trimethylol propane trimethacrylol propane trimethacrylate (TMPTMA), ethylene vinyl acetate (EVA, 12% vinyl acetate content), and their blends (0.5, 1, 1.5, 2, 2.5, 3, and 5 parts/100 parts EVA) was investigated. An IR study showed some residual unsaturations retained in irradiated pure TMPTMA, while in blends all unsaturations were used up at a very early stage of irradiation. The concentration of the carbonyl group due to air oxidation increased in pure EVA and blends, but it reached a maximum at the 1.5-part TMPTMA level and 5-Mrad dose. some ether linkages were formed during irradiation in pure EVA and the blends, although in pure EVA the concentration of ether linkages reached a maximum at the 2-Mrad dose and then decreased and in the blends it increased with an increase in radiation dose. Gel content showed an increasing trend with an increase in radiation dose, but it increased marginally with TMPTMA level. A blend of EVA with 1 part TMPTMA produced more gel than pure EVA at the same irradiation dose. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号