共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
提出了一种对数模型(logarithmmodel,简称LM),构造了一个词义自动消歧系统LM-WSD(wordsensedisambiguationbasedonlogarithmmodel).在词义自动消歧实验中,构造了4种计算模型进行词义消歧,根据4个计算模型的消歧结果,分析了高频率词义、指示词、特定领域、固定搭配和固定用法信息对名词和动词词义消歧的影响.目前,该词义自动消歧系统LM-WSD已经应用于基于词层的英汉机器翻译系统(汽车配件专业领域)中,有效地提高了翻译性能. 相似文献
4.
词义消歧是自然语言处理中的一个关键问题,为提高大规模词义消歧的准确率,提出了一种基于模板的无导词义消歧方法。利用多义词不同义项的同义或近义单义词对该义项进行表述,综合考虑共现词出现的位置、上下文距离及出现频次,据此构造语境模板,有效地解决了多义词义项确定的困难。实验结果表明,本文提出的方法在消歧性能方面有较明显的改善。 相似文献
5.
6.
基于最大熵原理的汉语词义消歧 总被引:3,自引:0,他引:3
词义消歧是自然语言处理中亟待解决的一个关键问题,本文提出一种基于最大熵模型的有监督的机器学习方法,用于汉语词义消歧。该方法综合了词标记、词性、主题等上下文特征,并用一种统一的表示方法规范化特征形式,解决了多种不同特征之间的融合和特征的知识表示。实验对20个汉语高频多义词进行了测试,平均正确率为87%,验证了该方法的有效性。 相似文献
7.
8.
词义消歧问题可以形式化为典型的分类问题.通过学习少量带有词义标注的语料构造多个消歧分量分类器,并利用未标语料动态地对这些分类器进行更新,根据最终分量分类器分别对多义词义项的判定结果,组合决策多义词的义项.该方法无需手工构造大规模具有词义标注的语料库,并且具有较高的消歧准确率. 相似文献
9.
10.
词义消歧一直是自然语言处理领域中的重要问题,该文将知网(HowNet)中表示词语语义的义原信息融入到语言模型的训练中。通过义原向量对词语进行向量化表示,实现了词语语义特征的自动学习,提高了特征学习效率。针对多义词的语义消歧,该文将多义词的上下文作为特征,形成特征向量,通过计算多义词词向量与特征向量之间相似度进行词语消歧。作为一种无监督的方法,该方法大大降低了词义消歧的计算和时间成本。在SENSEVAL-3的测试数据中准确率达到了37.7%,略高于相同测试集下其他无监督词义消歧方法的准确率。 相似文献
11.
针对传统词义消歧方法面临的数据稀疏问题,提出一种基于上下文语境的词义消歧方法。该方法假设同一篇文章中的句子之间共享一些相同的话题,首先,抽取在同一篇文章中包含相同歧义词的句子,这些句子可以作为歧义句的上下文语境,为其中的一个歧义句子提供消歧知识;其次,通过一种无监督的词义消歧方法进行词义消歧。在真实的语料上实验结果表明,使用2个上下文语境句子,窗口大小为1时,该方法的消歧准确率比基线方法(OrigDisam)提高了3.26%。 相似文献
12.
词义消歧在自然语言处理中一直是一个难点问题,同时,也是很多领域都需要解决的一个重要环节。文章首先介绍了目前一些常用词义消歧方法的特点和这些方法的研究进展,并在此基础上探讨了一种基于BP神经网络和统计方法相结合的有导词义消歧模型,最后详细讲解了BP神经网络原理,并对使用这种混合人工智能的消歧模型的可能性和优越性进行了讨论。 相似文献
13.
14.
词义消歧一直是一个难点,同时,也是很多领域都需解决的一个环节。该文首先介绍了目前基于语料库进行词义消歧方法的研究进展和各自的特点,在此基础上探讨了一种基于实例和基于统计的方法(即基于语料库的两种主流方法)相结合的混合策略,并对其可能性和优越性进行了讨论。 相似文献
15.
基于最大熵模型的汉语词义消歧与标注方法 总被引:3,自引:0,他引:3
分析最大熵模型开源代码的原理和各参数的意义,采用频次和平均互信息相结合特征筛选和过滤方法,用Delphi语者编程实现汉语词义消歧的最大熵模型,运用GIS(Generalized Iterative Scaling)算法计算模型的参数。结合一些语占知识规则解决训练语料的数据稀疏问题,所实现的汉语词义消歧与标注系统,对800多个多义词进行词义标注,取得了较好的标注正确率。 相似文献
16.
17.
词义排岐是自然语言处理中最关键也是最困难的问题之一,至今仍没有得到完全有效的解决。在研究HNC表达汉语知识的基础上,提出了一种基于概念关联式的汉语词义消歧方法,用于处理汉语的歧义字段。该方法综合了词语概念的层次性、网络性、结构性特征,用一种统一的表示式来规范这类特征,解决了多个不同概念之间的知识关联表示问题。实验对20个汉语高频多义词进行了测试,平均正确率为94%,验证了该方法的有效性。 相似文献
18.
为了解决困扰词义及译文消歧的数据稀疏及知识获取问题,提出一种基于Web利用n-gram统计语言模型进行消歧的方法.在提出词汇语义与其n-gram语言模型存在对应关系假设的基础上,首先利用Hownet建立中文歧义词的英文译文与知网DEF的对应关系并得到该DEF下的词汇集合,然后通过搜索引擎在Web上搜索,并以此计算不同DEF中词汇n-gram出现的概率,然后进行消歧决策.在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集上的测试表明,该方法的Pmar值为55.9%,比其上该任务参评最好的无指导系统性能高出12.8%. 相似文献
19.
在系统中搜索某一姓名时,会返回该同名作者的所有文档(如论文、网页),严重影响用户体验,姓名消歧可提高检索精度.因此,文中提出基于异质网络表示学习的姓名消歧方法.首先为每个歧义姓名构造一个论文异质网络.然后使用异质网络表示学习并结合词向量化语义表征学习方法,获取网络中每个论文节点的表征向量.最后使用具有噪声的基于密度的聚类方法与规则匹配结合的聚类方法将论文划分给不同的作者实体.文中方法在OAG-WholsWho比赛数据集上的性能较优,结果验证方法的有效性. 相似文献
20.
为解决困扰词义消歧及译文消歧任务中存在的数据稀疏及知识获取问题,提出一种利用双语词汇Web间接关联的完全无指导消歧方法.首先做出词汇歧义可由双语词汇的间接关联度决定的假设,为译文消歧提供了一种新的知识.在此基础上,对4种常用计算间接关联的方法进了改造并定义了双语词汇Web间接关联.随后进行基于Web的词汇消歧知识获取并设计了3种消歧决策方法.最后,在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集进行了测试.该方法的Pmar值为44.4%,超过了该评测上最好的无指导系统的结果. 相似文献