首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.  相似文献   

2.
Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-ray diffraction patterns (XRD) show that the phase of SnO2 films are different at different deposition temperatures. The sheet resistance of the films decreases with increase of deposition temperature. X-ray photoelectron spectroscopy (XPS) shows that the SnO2 thin film is non-stoichiometric. The sheet resistance increases with increase in oxygen flow. Sb-doped SnO2 thin films are more sensitive to alcohol than carbon monoxide, and its maximum sensitivity is about 220%.  相似文献   

3.
The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the for- mation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH4) concentration (2-10 vol.%) in CH4+Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (~18-22 GPa) with lower hydrogen content in the fihns (~20 at.%) deposited at 10 vol.% CH4, was achieved by using the RF bias, However, the films deposited using the LF bias, under similar RF plasma generation power and CH4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (~6-12 GPa) with high hydrogen content (~40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration.  相似文献   

4.
Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.  相似文献   

5.
In this paper, we report silicon oxide coatings deposited by plasma enhanced chem- ical vapor deposition technology (PECVD) on 125 pm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimiza- tion of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-a g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in structure of coatings related to the properties of encapsulated solar cells. And then the chemical encapsulated cell was investigated in detail  相似文献   

6.
Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film.  相似文献   

7.
In this paper, diamond-like carbons were produced on tungsten and aluminum substrates by DC plasma enhanced chemical vapor deposition (DC-PECVD) system in a C2H2/H2 gas mixture using C2H2 as source hydrocarbon and H2 as etching and diluting gas. The operation pressure during the growth and substrates temperature were 15 Torr and 180°C, respectively. Characterization of the DLCs deposited on tungsten and aluminum substrates were carried out by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Raman spectroscopy and Atomic force microscopy (AFM). AFM analysis displayed that the DLCs grown on W substrate has lower roughness than the DLCs deposited on Al substrate and it was smoother. FTIR analysis indicates the existence of C–H vibration mode in the DLCs grown on both of substrates. The Raman spectroscopy shows G peak position and I(D)/I (G) ratio decreased for the DLCs grown on W substrate. The SEM images show diffuse and dense distribution of DLCs in Al and W substrate, respectively. These results shows that the optimum conditions were obtained on W substrate.  相似文献   

8.
储氢薄膜的吸氢动力学研究   总被引:2,自引:0,他引:2  
研究了储氢薄膜材料在两相区范围内的吸氢动力学,它包括4个力学过程:氢在气/固表面的化学吸附,氢原子的表面渗透,氢原子在氢化物层的扩散和金属/氢化物界面上的氢化物生成。  相似文献   

9.
The fabrication of a-C:H films from methane has been performed using dielectric-barrier discharges at atmospheric pressure. The effect of combined-feed gas, such as carbon dioxide, carbon monoxide or acetylene on the formation of a-C:H films has been investigated. It has been demonstrated that the addition of carbon monoxide or acetylene into methane leads to a remarkable improvement in the fabrication of a-C:H films. The characterization of carbon film obtained has been conducted using FT-IR, Raman and SEM.  相似文献   

10.
A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or templates. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and the chem- ical compositions of nanoparticles. The average size of particles is about 100 nm and the length of synthesized nanorods is between 1 μm and 2.5/tm. The analyses of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED) and X-ray diffraction (XRD) reveals that the nanoparticles and nanorods are crystalline.  相似文献   

11.
A homogeneous atmospheric pressure dielectric barrier discharge is studied. It is in argon with small admixtures of titanium tetrachloride vapour and oxygen for the deposition of thin titania films on glass substrates. A special electrode configuration was applied in order to deposit the titania film uniformly. The sustaining voltage (6 kV to 12 kV), current density (about 3 mA/cm^2) and total optical emission spectroscopy were monitored to characterize the discharge in the gap of 2 mm. Typical deposition rates ranged from approximately 30 nm/min to 120 nm/min. The film morphology was investigated by using scanning electron microscopy (SEM) and the composition was determined with an energy dispersive x-ray spectroscopy (EDS) analysis tool attached to the SEM. The crystal structure and phase composition of the films were studied by x-ray diffraction (XRD). Several parameters such as the discharge power, the ratio of carrier gas to the precursor gas, the deposition time on the crystallization behavior, the deposition rate and the surface morphology of the titania film were extensively studied.  相似文献   

12.
Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.  相似文献   

13.
To carry out our research, a plasma focus device is used to deposit thin films of nitrogen doped hydrogenated amorphous carbon (a-C:H:N) onto the stainless steel-AISI-304 substrates at room temperature. Thin films are deposited with the same numbers of focus shots, at the same distance from the anode tip and with different partial pressures of nitrogen in the mixtures of acetylene/nitrogen as working gas. The nitrogen contents of deposited films are studied using nuclear reaction analysis (NRA) techniques. The results prove that nitrogen contents of the samples do not increase significantly by increasing partial pressure of nitrogen of the working gas for both sets of the samples. Moreover, NRA results exhibit the limitation of nitrogen incorporated into the samples, when this experimental setup is used. G-peak position and peak intensity ratio of the D-band to G-band (ID/IG) are used to investigate the diamond characters. Also, they show that sp2 clustering is highly dependent on the nitrogen atomic contents and angular position of the samples. Scanning electron microscopy (SEM) shows the granular surface morphology of the films. Furthermore, it shows that angular position of the samples with respect to the anode axis plays an important role in the grain size of the surface of the samples. The thickness of the films decreases significantly by increasing angular position of the samples, while it decreases slightly by increasing partial pressure of nitrogen of the working gas. The Vickers surface hardness of the thin films exhibits significant dependency on the sp2 clustering.  相似文献   

14.
In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-tic biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond qual- ity. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.  相似文献   

15.
Boron-doped nanocrystalline diamond(NCD) exhibits extraordinary mechanical properties and chemical stability,making it highly suitable for biomedical applications.For implant materials,the impact of boron-doped NCD films on the character of cell growth(i.e.,adhesion,proliferation) is very important.Boron-doped NCD films with resistivity of 10~(-2)Ω·cm were grown on Si substrates by the microwave plasma chemical vapor deposition(MPCVD) process with H_2 bubbled B_2O_3.The crystal structure,diamond character,surface morphology,and surface roughness of the boron-doped NCD films were analyzed using different characterization methods,such as X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and atomic force microscopy(AFM).The contact potential difference and possible boron distribution within the film were studied with a scanning kelvin force microscope(SKFM).The cytotoxicity of films was studied by in vitro tests,including fluorescence microscopy,SEM and MTT assay.Results indicated that the surface roughness value of NCD films was 56.6 nm and boron was probably accumulated at the boundaries between diamond agglomerates.MG-63 cells adhered well and exhibited a significant growth on the surface of films,suggesting that the boron-doped NCD films were non-toxic to cells.  相似文献   

16.
Methane(CH4) plasma was used to produce amorphous hydrogenated carbon(aC:H) films by a single capacitively coupled radio frequency(RF) powered plasma system.The system consists of two parallel electrodes:the upper electrode is connected to 13.56 MHz RF power and the lower one is connected to the ground.Thin films were deposited on glass slides with different sizes and on silicon wafers.The influence of the plasma species on film characteristics was studied by changing the plasma parameters.The changes of plasma species during the deposition were investigated by optical emission spectroscopy(OES).The structural and optical properties were analyzed via Fourier transform infrared(FTIR) spectroscopy,X-ray diffraction(XRD) and UV-visible spectroscopy,and the thicknesses of the samples were measured by a profilometer.The sp~3/sp~2 ratio and the existing H atoms play a significant role in the determination of the chemical properties of thin films in the plasma.The film quality and deposition rate were both increased by raising the power and the flow rate.  相似文献   

17.
Carbon nitride films were deposited by a twinned microwave electron cyclotron resonance (ECR) plasma source enhanced unbalanced magnetron sputtering system. The results indicate that the structure of the films is sensitive to the nitrogen content. The increase in the nitrogen flow ratio leads to an increase in the sp3 content and an improvement of the tribological properties.  相似文献   

18.
Using CH4 and CF4 precursor gases, amorphous fluorinated hydrocarbon (a-C:F:H) films were prepared with the method of microwave electronic cyclotron resonant (ECR) plasma chemical vapor deposition. Deposition rate of the film firstly increases and then decreases with variable flow ratios R {[CF4]/([CF4] + [CH4]} due to the competition between deposition and etching process. Results from Fourier-transform infrared transmission spectroscopy of these films show that C-F bond configuration in a-C:F:H films evolves with the variable gas flow ratios R. The locations of the C-F peaks in IR spectra shift to higher frequency with the increase of R, and finally the structure in films with R >75% takes on a PTFE-like structure, which mainly consists of -CF2- chain. The change of optical band gap Eg deduced by a Tauc plot with R is also discussed.  相似文献   

19.
Al-doped zinc-oxide(AZO) thin films treated by oxygen and chlorine inductively coupled plasma(ICP) were compared. Kelvin probe(KP) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the e?ect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP(O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP(Cl-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more e?ective than Cl-ICP for enhancing the work function of AZO films, which is well consistent with KP results.  相似文献   

20.
The commercially available hydrogensilsesquioxane (HSQ) offers a low dielectric constant. In this paper, the impact of oxygen plasma treatment has been investigated on the low-k HSQ films. Fourier transform infrared (FTIR) spectroscopy was used to identify the network structure and cage structure of Si-O-Si bonds and other possible bonds after treatments. C-V and I-V measurements were used to determine the dielectric constant, the electronic resistivity and the breakdown electric field, respectively. The result indicates that oxygen plasma treatment will damage the HSQ films by removing the hydrogen content. Both dielectric constant and leakage current density increase significantly after oxygen plasma exposure. The dielectric constant and leakage current density can both be decreased by annealing at 350℃ for 1.5 h in nitrogen ambient. The reason is that the open porous of the external films can be modified and density of thin film be increased. The rough surface can be smoothed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号