首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ti-doped WO3 films were prepared by the mid-frequency dual-target magnetron sputtering method. The structure and electrochromic properties of the Ti-doped WO3 films were analysed by X-Ray diffraction (XRD), Raman spectroscopy, spectrophotometer, cyclic chronoam- perometry and atomic force microscopy (AFM). The results indicate that the erystallinity decrease after the doping of titanium, the channels for ion injection and extraction increase, the responding speed with 5.1% titanium doped becomes faster, and its circle life increases more than four times compared with the undoped WO3 film. In the coloured state, the W-O-W bonds decrease, but the W = O bonds increase. Since the W-O-W bonds break down for Li+ ions' injection and more W = O bonds form, it is more convenient to inject Li+ ions into the Ti-doped film than undoped film because more W-O-W bonds break down in the coloured state.  相似文献   

2.
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.  相似文献   

3.
Metallic copper(Cu) films were deposited on a Si (100) substrate by unbalanced magnetron sputtering enhanced by radio-frequency plasma and external magnetic field confinement. The morphology and structure of the films were examined by scanning electron microscopy (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The surface average roughness of the deposited Cu films was characterized by AFM data and resistivity was measured by a four-point probe. The results show that the Cu films deposited with radio-frequency discharge enhanced ionization and external magnetic field confinement have a smooth surface, low surface roughness and low resistivity. The reasons may be that the radio-frequency discharge and external magnetic field enhance the plasma density, which further improves the ion bombardment effect under the same bias voltage conditions. Ion bombardment can obviously influence the growth features and characteristics of the deposited Cu films.  相似文献   

4.
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).  相似文献   

5.
Plasma properties in a planar DC magnetron system are simulated by a non-self- consistent particle method in two dimensions. Through tracing the trajectories of the energetic electrons in the specified electric field and the magnetic field, and treating the collision process by Monte Carlo method, the spatial profile of ionization events can be obtained conveniently. Assuming that the ions speed up from the ionization points and bombard the target with the energy at these points, and according to the Yamamura/Tawara method, the target erosion can be predicted. The magnetic field is calculated by the finite element method, and the electric field is estimated according to the self-consistent simulation and measured results. The influence of the time step size on the target erosion profile is analysed first to find a proper step size. Then the influence of electric field estimated on the erosion profile is discussed. The erosion profile may become narrower if the sheath thickness is increased. Finally, considering the dynamic erosion process, the erosion profile may get wider over time for the magnetron with shunt bar.  相似文献   

6.
For a rectangular planar direct current (DC) magnetron, anomalous target erosion may occur in the curve-out region and inner side of the curved region. One key factor is that the magnetic field in the end region is weaker than that in the straight region, and another important factor may be that there is a circumferential component of the magnetic field in the curved region. Through a calculation of three-dimensional magnetic field for the rectangular magnetron, a magnet structure shimmed by permanent magnet bars and ferromagnetic bars is proposed to solve the above problems. Through a three-dimensional non-self-consistent particle simulation and the Yamamura/Tawara formula, the target erosion profile could be predicted. The simulation results show that for an improved uniformity in magnetic field, the entire target utilization could be much enhanced.  相似文献   

7.
The mutant effects of a keV range nitrogen ion (N+) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N+ implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms.  相似文献   

8.
This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.  相似文献   

9.
Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, fiat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3-4 V/100 A at a gas flow rate of about 1-1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate. and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65-78%.  相似文献   

10.
The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.  相似文献   

11.
He-charged oxide dispersion strengthened(ODS)FeCrNi films were prepared by a radiofrequency(RF)plasma magnetron sputtering method in a He and Ar mixed atmosphere at150℃.As a comparison,He-charged FeCrNi films were also fabricated at the same conditions through direct current(DC)plasma magnetron sputtering.The doping of He atoms and Y_2O_3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y_2O_3/FeCrNi composite target sputtering method,respectively.Inductive coupled plasma(ICP)and x-ray photoelectron spectroscopy(XPS)analysis confirmed the existence of Y_2O_3 in FeCrNi films,and Y_2O_3 content hardly changed with sputtering He/Ar ratio.Cross-sectional scanning electron microscopy(SEM)shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio.Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio,while the dispersion of Y_2O_3 apparently increased the hardness of the films.Elastic recoil detection(ERD)showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts(~17 at.%).Compared with the minimal change of He level with depth in DC-sputtered films,the He amount decreases gradually in depth in the RF-sputtered films.The Y_2O_3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y_2O_3 and the inhibition effect of nano-sized Y_2O_3 particles on the He element.  相似文献   

12.
A sintered Ti13Cu87 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-copper-nitrogen thin films were deposited on Si (111), glass slide and potassium bromide (KBr) substrates. Phase analysis and structural properties of titanium-copper-nitrogen thin films were studied by X-ray diffraction (XRD). The chemical bonding was characterized by Fourier transform infrared (FTIR) spectroscopy. The results from XRD show that the observed phases are nano-crystallite cubic anti rhenium oxide (anti ReO3) structures of titanium doped Cu3N (Ti:Cu3N) and nano-crystallite face centered cubic (fcc) structures of copper. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) were used to determine the film morphology and atomic titanium/copper ratio, respectively. The films possess continuous and agglomerated structure with an atomic titanium/copper ratio ( 0.07) below that of the original target ( 0.15). The transmittance spectra of the composite films were measured in the range of 360 to 1100 nm. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using a reverse engineering method. In the visible range, the higher absorption coefficient of the films prepared at lower sputtering power indicates more nitrification in comparison to those prepared at higher sputtering power. This is consistent with the formation of larger Ti:Cu3N crystallites at lower sputtering power. The deposition rate vs. sputtering power shows an abrupt transition from metallic mode to poisoned mode. A complicated behavior of the films’ resistivity upon sputtering power is shown.  相似文献   

13.
In this study,the influence of substrate temperature on properties of A1-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration of ionized nitrogen N+ and ionized zinc Zn+ were increased,which promoted the formation of ZnO films and lowered the necessary substrate temperature.After optimization,a co-doped p-type ZnO thin film with a resistivity lower than 0.35 Ω cm and a hole concentration higher than 5.34 × 1018 cm-3 is grown at 280 ℃.X-ray diffraction results confirm that A1-N co-doping does not destruct the ZnO wurtzite structure.X-ray photoelectron spectroscopy demonstrates that the presence of A1 promotes the formation of acceptor (No)defects in ZnO films,and ensures the role of A1 in stabilizing p-type ZnO.  相似文献   

14.
15.
In this study, the improvement in the removal of chlorobenzene (C6H5Cl) in the air was investigated by combining dielectric barrier discharge (DBD) driven by bipolar pulse-power with catalysts. Molecular sieve 4A (MS-4A) and MnO2/γ-Al2O3 (MnO2/ALP) as two kinds of catalysts were tested at different positions in a DBD reactor. Catalysts were located either in the discharging area between two electrodes, or just behind the discharging area (in the afterglow area) closed to the outlet. The results indicated that DBD reactor with a bipolar pulse power-supply produced strong instant discharge and energetic particles, which can effectively activate catalysts of MS-4A and MnO2/ALP located in the afterglow area to achieve the synergistic effects on effective fission of chemical bonds of chlorobenzene. It was considered that the gas-chlorobenzene and the chlorobenzene adsorbed on the catalysts were decomposed simultaneously.  相似文献   

16.
With the physical method of micro-gap gas discharge, OH. radicals were produced by the ionization of O2 in air and H2O in the gaseous state, in order to explore more effective method totreat the ship's ballast water. The surface morphology of Al2O3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al2O3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved.  相似文献   

17.
Hysteresis loss is one of the electromagnetic characteristics controlled by time evolution of magnetic field and current distribution inside the conductor. Brandt's method allows us to model the interaction of the conductor with an external magnetic field. Instead of the constant critical current density (Jc =CONST), the Jc scaling law from current-voltage (I-V) measurement is used to model the magnetization loop. By comparing the calculated results with the measured data, it is shown that the Jc scaling law, i.e. the deviatoric strain model, is not useful in a very low field. To solve this problem, the Kim model about Jc as a function of applied field has been applied in the low field case. This method can be used to predict the hysteresis loss of Nb3Sn filamentary strand.  相似文献   

18.
The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steadystate density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and Al2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and Al2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and Al2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Al2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.  相似文献   

19.
The properties of a Lanthanum bromide (LaBr3) detector and its response functions were investigated via experiments and simulations in this paper. The LaBr3 detector had good relative energy resolution and higher efficiency than a high-purity germanium detector. Monte Carlo and other numerical methods were used to calculate the efficiencies of a LaBr3 detector with a square collimation window. A model of the numerical method was established based on a pure geometric model that was consistent with the experimental situation. The results showed that the detector response functions calculated by these methods were in great agreement with experimental results.  相似文献   

20.
Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号