首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The mechanism of photodegradation of poly(neopentyl isophthalate), an aromatic polyester as model for industrial polyester coatings, was studied on the molecular level. Changes in the chemical structure of molecules caused by UV irradiation (mercury lamp) were investigated using several analytical techniques. Photodegradation leads both to chain scission and to crosslinking, taking place simultaneously as measured by SEC. Extensive exposure results in appreciable amount of insoluble material (gel). Generation of carbonyl CO and hydroxyl OH/OOH groups in the polymer structure was monitored with ATR-FTIR. MALDI-ToF MS provided detailed structural information on the degradation products of the polyester. In the initial stage of degradation Norrish photocleavage (type I) takes place. Radicals generated in this reaction (photolysis) can directly abstract hydrogen or can react with oxygen creating primarily acid and hydroxyl end groups (photooxidation). Moreover hydrogen abstraction taking place along the polymer backbone followed by oxidation reactions leads to further fragmentation of the polymer chain. The highly informative data provided by MALDI-ToF MS allowed establishing the pathways of photolysis and photooxidation.  相似文献   

2.
The influence of incorporating 5-tert-butyl isophthalic units (tBI) in the polymer chain of poly(ethylene terephthalate) (PET) on the crystallization behavior, crystal structure, and tensile and gas transport properties of this polyester was evaluated. Random poly(ethylene terephthalate-co-5-tert-butyl isophthalate) copolyesters (PETtBI) containing between 5 and 40 mol% of tBI units were examined. Isothermal crystallization studies were performed on amorphous glassy films at 120 °C and on molten samples at 200 °C by means of differential scanning calorimetry. Furthermore, the non-isothermal crystallization behavior of the copolyesters was investigated. It was observed that both crystallinity and crystallization rate of the PETtBI copolyesters tend to decrease largely with the comonomeric content, except for the copolymer containing 5 mol% of tBI units, which crystallized faster than PET. Fiber X-ray diffraction patterns of the semicrystalline PETtBI copolyesters proved that they adopt the same triclinic crystal structure as PET with the comonomeric units being excluded from the crystalline phase. Although PETtBI copolyesters became brittle for higher contents in tBI, the tensile modulus and strength of PET were barely affected by copolymerization. The incorporation of tBI units slightly increased the permeability of PET, but copolymers containing up to 20 mol% of the comonomeric units were still able to present barrier properties.  相似文献   

3.
The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240-280 °C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Consequently, the predominant thermal degradation mechanism of PTT is consistent with concerted, electrocyclic oxo retro-ene chain cleavage under conditions pertinent to viable polymerization processes and efficient downstream extrusion and spinning into fiber. Although catalysts, additives and other reaction variables can influence the thermo-oxidative stability of polyesters including PTT, these factors have been found to have little or no effect on PTT thermal degradation rates under non-oxidative environments. The thermal stability of poly(butylene terephthalate) [PBT] has also been determined from butenyl endgroups (NMR) and molecular weight (IV). The activation energies (Ea) for both PTT and PBT thermal chain cleavage are similar to the reported Eas for poly(ethylene terephthalate) [PET] degradation, which is further supported by semi-empirical molecular orbital calculations on model compounds. However, both PTT and PBT undergo molecular weight decrease faster than PET. The apparent slower chain cleavage of PET is attributed to the contribution of productive chain propagation reactions due to unstable vinyl endgroups which alters the equilibrium stoichiometry compared to the relatively stable endgroups of PTT and PBT.  相似文献   

4.
Chenguang Yao  Guisheng Yang 《Polymer》2010,51(6):1516-11075
A new type of poly(ether-ester) based on poly(trimethylene terephthalate) as rigid segments and poly(ethylene oxide terephthalate) as soft segments was synthesized and its crystallization behavior and morphology were investigated. Differential Scanning Calorimetry revealed that the copolymer containing 57 wt% soft segments presented a low glass transition temperature (−46.4 °C) and a high melting temperature (201.8 °C), suggesting that it had the typical characteristic of thermoplastic elastomer. With increasing soft segment content from 35 to 57 wt%, the crystallization morphology transformed from banded spherulites to compact seaweed morphology at a certain film thickness, which was due to the change of surface tension and diffusivity caused by increasing the soft segment content. Moreover, with the decrease of film thickness from 15 to 2 μm, the crystallization morphology of the copolymer (57 wt% soft segment) changed from wheatear-like, compact seaweed to dendritic. Scanning Electron Microscopy revealed that some flower-like crystals presenting in the bulk, which had been surprisingly found in the poly(ether-ester) segmented block copolymers for the first time. Possible mechanism was discussed in the text.  相似文献   

5.
High-pressure phase behaviors are measured for the CO2 + neopentyl methacrylate (NPMA) system at 40, 60, 80, 100, and 120 °C and pressure up to 160 bar. This system exhibits type-I phase behavior with a continuous mixture-critical curve. The experimental results for the CO2 + NPMA system are modeled using the Peng-Robinson equation of state. Experimental cloud-point data up to the temperature of 180 °C and the pressure of 2000 bar are presented for ternary mixtures of poly(neopentyl methacrylate) [poly(NPMA)] + supercritical solvents + NPMA systems. Cloud-point pressures of poly(NPMA) + CO2 + NPMA system are measured in the temperature range of 60-180 °C and to pressures as high as 2000 bar with NPMA concentration of 0.0, 5.2, 19.0, 28.1 and 40.2 wt%. It appears that adding 51.2 wt% NPMA to the poly(NPMA) + CO2 mixture does significantly change the phase behavior. Cloud-point curves are obtained for the binary mixtures of poly(NPMA) in supercritical propane, propylene, butane, 1-butene, and dimethyl ether (DME). The impact of dimethyl ether concentration on the phase behavior of the poly(NPMA) + CO2 + x wt% DME system is also measured at temperature of 180 °C and pressure range of 36-2000 bar. This system changes the pressure-temperature (P-T) slope of the phase behavior curves from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region as the NPMA concentration increases.  相似文献   

6.
Uniaxial and plane strain compression experiments are conducted on amorphous poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) over a wide range of temperatures (25-110 °C) and strain rates (.005-1.0 s−1). The stress-strain behavior of each material is presented and the results for the two materials are found to be remarkably similar over the investigated range of rates, temperatures, and strain levels. Below the glass transition temperature (θg=80 °C), the materials exhibit a distinct yield stress, followed by strain softening then moderate strain hardening at moderate strain levels and dramatic strain hardening at large strains. Above the glass transition temperature, the stress-strain curves exhibit the classic trends of a rubbery material during loading, albeit with a strong temperature and time dependence. Instead of a distinct yield stress, the curve transitions gradually, or rolls over, to flow. As in the sub-θg range, this is followed by moderate strain hardening and stiffening, and subsequent dramatic hardening. The exhibition of dramatic hardening in PETG, a copolymer of PET which does not undergo strain-induced crystallization, indicates that crystallization may not be the source of the dramatic hardening and stiffening in PET and, instead molecular orientation is the primary hardening and stiffening mechanism in both PET and PETG. Indeed, it is only in cases of deformation which result in highly uniaxial network orientation that the stress-strain behavior of PET differs significantly from that of PETG, suggesting the influence of a meso-ordered structure or crystallization in these instances. During unloading, PETG exhibits extensive elastic recovery, whereas PET exhibits relatively little recovery, suggesting that crystallization occurs (or continues to develop) after active loading ceases and unloading has commenced, locking in much of the deformation in PET.  相似文献   

7.
The morphology and crystal structures of poly(2,6-naphthalene terephthalate) (PNT) and poly(2,6-naphthalene naphthalate) (PNN), prepared by confined thin film melt/solution polymerization (CTFMP/CTFSP), were characterized by transmission electron microscopy, electron diffraction and molecular modeling. The unit cells of PNT and PNN are both monoclinic (P121/a1 space group) with parameters a=8.18 Å, b=5.80 Å, c=14.9 Å and β=101.9° for PNT, and a=7.85 Å, b=5.97 Å, c=17.1 Å and β=99.5 for PNN, respectively. Simulated ED patterns from the proposed unit cells agree well with the observed ED patterns. The crystal structures of PNT and PNN are also compared with those of poly (p-phenylene naphthalate) (PPN) and poly(2,6-oxynaphtalate) (PONA).  相似文献   

8.
Poly(trimethylene terephthalate) (PTT) spherulite shows interference color under polarized light microscope without a sensitive tint plate. The fact indicates that the retardation of PTT spherulite is high, while it was reported that the birefringence in PTT fiber is low. In this study, the reason why the high birefringence is observed in PTT spherulite was discussed. By small area X-ray diffraction measurement, it was confirmed that a-axis of unit cell of PTT crystal was parallel to the radial direction of the spherulite. Based on the result, we calculated the refractive indices of parallel to a-axis and the other orthogonal directions. It was clarified that the refractive index of a-axis is much lower than the others and the intrinsic birefringence for a-axis orientation is high. It is the reason why the PTT spherulite shows high and negative birefringence.  相似文献   

9.
The hydrolysis of sulfonated poly(butylene terephthalate) copolymers was studied. Sulfonated poly(butylene terephthalate) copolymers, referred to as PBT-ionomers (PBTIs), were shown to hydrolyze faster than poly(butylene terephthalate) (PBT). An experiment designed to isolate the effect of the sulfonated isophthalate (SIP) moieties on hydrolysis rate showed that the SIP moieties were responsible for the faster hydrolysis. Experiments aimed at identifying the mechanism of influence of the SIP moieties on hydrolytic stability indicated that hydrolysis was enhanced by the presence of ionic multiplets which increase amorphous content, imbibe water, and perhaps exert a medium effect on the hydrolysis of esters associated with the ionic groups.  相似文献   

10.
Poly(butylene terephthalate-co-thiodiethylene terephthalate) copolymers of various compositions were synthesized and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers under investigation show a good thermal stability. At room temperature they appear as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. A pure crystalline phase has been evidenced at high content of butylene terephthalate or thiodiethylene terephthalate units and Baur's equation was found to describe well the Tm-composition data. Amorphous samples (containing 50-100 mol% of thiodiethylene terephthalate units) showed a monotonic decrease of Tg as the content of sulfur-containing units is increased, due to the presence of flexible C-S-C bonds in the polymeric chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

11.
N.M. Larocca 《Polymer》2004,45(15):5265-5277
AES, a terpolymer of acrylonitrile-EPDM(ethylene/propylene/diene elastomer)-styrene, was blended in poly(butylene terephthalate) (PBT). Uniaxial tensile tests were carried out at various strain rates on blends containing 0-50 wt% of AES in order to study the yielding behavior of PBT in these blends by the Eyring equation. It was found that stress concentration factor (γ) increases sharply when a small content of AES is incorporated in the PBT matrix, but further incorporation seems to have small effect and γ levels out, a behavior that can be explained by the blend morphology and AES mechanical characteristics. The effect of AES content on the notched Izod impact strength of PBT blends was also examined in depth. It was found that a supertough blend can be achieved with at least 30 wt% of AES in PBT in appropriate molding temperature. Macroscopic and microscopic observations indicate that dilatational process play an important role on the toughening mechanism in PBT/AES blends at notched Izod impact tests.  相似文献   

12.
Nanofibrous mats were prepared by electrospinning of poly(trimethylene terephthalate) (PTT) with diameter ranging from 200 to 600 nm. Morphology of electrospun nanofiber obtained by changing processing parameters such as solution concentration and their deposition time, was investigated with scanning electron microscope (SEM). Especially, periodic feature of surface roughness, such as diamond-shaped structure, was exhibited as the deposition time increased. In this work, it was shown that this phenomenon might result from polymer chain mobility, which was induced by solvent properties, and point bonding structure. In addition, schematic diagram was introduced to identify the formation of diamond-shape structure in PTT electrospun nanofibrous mats.  相似文献   

13.
Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 °C.FR-IR and1 H NMR analysis results indicate that the interchange reaction has occurred between MXD6 oligomers and PET oligomers. The thermal behavior of copolymers shows that the melting temperature of MXD6/PET copolymers decreases with the increasing of amount of PET oligomers, while the crystallization temperature accordingly increases. And the equilibrium temperature Tm0 is evaluated to be 251.8 °C for the copolymers with5 wt% PET oligomer adding, which is very close to that of neat MXD6. The tensile and impact strength of MXD6/PET copolymers are significantly improved than that of pure MXD6 by mechanical properties test, and the microfibril structure in the impact fracture sample's surface reveals the feature of ductile fracture.  相似文献   

14.
S.L. Sun  H.X. Zhang 《Polymer》2005,46(18):7632-7643
Glycidyl methacrylate (GMA) functionalized acrylonitrile-butadiene-styrene (ABS) copolymers have been prepared via an emulsion polymerization process. These functionalized ABS copolymers (ABS-g-GMA) were blended with poly(butylene terephthalate) (PBT). DMA result showed PBT was partially miscible with ABS and ABS-g-GMA, and DSC test further identified the introduction of GMA improved miscibility between PBT and ABS. Scanning electron microscopy (SEM) displayed a very good dispersion of ABS-g-GMA particles in the PBT matrix compared with the PBT/ABS blend when the content of GMA in PBT/ABS-g-GMA blends was relatively low (<8 wt% in ABS-g-GMA). The improvement of the disperse phase morphology was due to interfacial reactions between PBT chains end and epoxy groups of GMA, resulting in the formation of PBT-co-ABS copolymer. However, a coarse, non-spherical phase morphology was obtained when the disperse phase contained a high GMA content (≥8 wt%) because of cross-linking reaction between the functional groups of PBT and GMA. Rheological measurements further identified the reactions between PBT and GMA. Mechanical tests showed the presence of only a small amount of GMA (1 wt%) within the disperse phase was sufficient to induce a pronounced improvement of the impact and tensile properties of PBT blends. SEM results showed shear yielding of PBT matrix and cavitation of rubber particles were the major toughening mechanisms.  相似文献   

15.
Sandrine Morlat  Jean-Luc Gardette   《Polymer》2003,44(26):7891-7897
Poly(ethylene oxide) (PEO) was irradiated in aqueous solution under long wavelengths (λ>300 nm, 20 °C) and in presence of oxygen. The photooxidation of PEO was studied by IR spectrophotometry, viscometry and size exclusion chromatography. The formation of the oxidation photoproducts was studied by infrared analysis of films obtained by evaporation of aliquots of irradiated aqueous solutions. The photoproducts were identified by chemical derivatization treatments coupled with infrared measurements. Viscosimetry and SEC analysis showed that photooxidation was leading to a dramatic decrease of the molecular weights. The influence of the pH of the aqueous solutions was also examined. Unexpected results were obtained for the pH 12 solutions, indicating a strong inhibition of the oxidation.

Comparison with the results obtained in the case of PEO irradiated in the solid state showed that no direct transposition of the knowledge concerning the behavior of the solid polymer could be made.  相似文献   


16.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

17.
Crystallization kinetics and morphology of poly(trimethylene terephthalate)   总被引:1,自引:0,他引:1  
In this work, the isothermal crystallization kinetics of polytrimethylene terephthalate (PTT) was first investigated from two temperature limits of melt and glass states. For the isothermal melt crystallization, the values of Avrami exponent varied between 2 and 3 with changing crystallization temperature, indicating the mixed growth and nucleation mechanisms. Meanwhile, the cold crystallization with an Avrami exponent of 5 indicated a character of three-dimensional solid sheaf growth with athermal nucleation. Through the analysis of secondary nucleation theory, the classical regime I→II and regime II→III transitions occurred at the temperatures of 488 and 468 K, respectively. The average work of chain folding for nucleation was ca. 6.5 kcal mol−1, and the maximum crystallization rate was found to be located at ca. 415 K. The crystallite morphologies of PTT from melt and cold crystallization exhibited typical negative spherulite and sheaf-like crystallite, respectively. Moreover, the regime I→II→III transition was accompanied by a morphological transition from axialite-like or elliptical-shaped structure to banded spherulite and then non-banded spherulite, indicating that the formation of banded spherulite is very sensitive to regime behavior of nucleation.  相似文献   

18.
Y KongJ.N Hay 《Polymer》2003,44(3):623-633
Differential scanning calorimetry (DSC) and temperature modulated DSC (MTDSC) have been used to investigate the melting behaviour of poly(ethylene terephthalate) (PET). Multiple melting endotherms were observed even at high heating rates, e.g. 160 K min−1 and these have been attributed to the presence of two different distributions of lamella thickness and re-crystallisation (reorganisation) on heating. This has been confirmed by MTDSC—the presence of endotherms and an exotherm in the reversing component of the heat flow during heating. Examination of the endotherms of samples heating stepwise indicated that further crystallisation took place above the isothermal crystallisation temperature (Tc). Some part of this was associated with lamella thickening and crystal perfecting. The multiple melting endotherms observed are a consequence of the balance between the melting and re-crystallisation and the lamella thickness distribution existing within the sample, prior to heating. The triple melting endotherms observed are attributed to the melting of secondary and primary lamellae produced on crystallisation and to thickened lamellae produced during heating to the melting point.  相似文献   

19.
新型无卤阻燃剂新戊二醇双磷酸二苯酯的合成研究   总被引:1,自引:1,他引:0  
报道了一种新型双磷酸酯阻燃剂———新戊二醇双磷酸二苯酯(NDP)的合成方法。采用氯化磷酸二苯酯(DPCP)和新戊二醇(NPG)为原料,以4-二甲氨基吡啶(DMAP)为催化剂,成功合成了NDP,并考察了溶剂、原料配比、反应温度、反应时间、催化剂用量等因素对反应收率的影响。反应的最佳条件为:以正己烷为溶剂,DPCP和NPG的摩尔比为2∶1,在0—5℃下反应12 h,DMAP与DPCP的质量比为5.3%,反应收率可达89.1%。经核磁、红外表征证明产品结构正确。热分析表明产品的热稳定性好,其分解可分为2个阶段:第1阶段在290℃左右,此时分解速度最快,在400℃仍有18.03%的质量残余;第2阶段热分解出现在717℃左右。  相似文献   

20.
Reactive blending at 290 °C of a series of mixtures of poly(ethylene terephthalate) (PET) and poly(1,4-butylene succinate) (PBS) led to the formation of block PET/PBS copolyesters. The block lengths of the resulting copolymers decreased with the severity of the treatment. Copolyesters with PET/PBS molar compositions of 90/10, 80/20, 70/30, and 50/50 were prepared by this method and their composition and microstructure were characterized by 1H and 13C NMR, respectively. The Tg, Tm, and crystallinity of the copolymers decreased as the content in PBS and the degree of randomness increased. The elastic modulus and tensile strength of the copolymers decreased with the content of PBS, whereas, on the contrary, the elongation at break increased. The PET/PBS copolymers exhibited a pronounced hydrolytic degradability, which increased with the content in 1,4-butylene succinic units. Hydrolysis mainly occurred on the aliphatic ester groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号