首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the pervaporation performance of thin-film composite membranes, novel thin-film composite membranes were prepared via interfacial polymerization by reacting 5-nitrobenzene-1,3-dioyl dichloride (NTAC) or 5-tert-butylbenzene-1,3-dioyl dichloride (TBAC) with triethylenetetraamine (TETA) on the surface of a modified polyacrylonitrile (mPAN) membrane (TETA-NTAC/mPAN and TETA-TBAC/mPAN). The effect of the acyl chloride monomers chemical structure on the pervaporation separation of an aqueous ethanol solution was investigated. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle measurements were applied to analyze the chemical structure, surface chemical composition, surface roughness and hydrophilicity of the polyamide active layer of the composite membrane. To correlate the variations in the free volume of the polyamide active layers with the pervaporation performance, positron annihilation spectroscopy (PAS) experiments were performed with a variable monoenergetic slow positron beam. From the results of the PAS and XPS experiments, the S parameter, o-Ps annihilation lifetime τ3 (corresponding to free volume size) and its intensity I3 (corresponding to free volume concentration), the τ3 and I3 of TETA-NTAC polyamide layer (positron incident energy of 1-1.7 keV) were both higher than those of TETA-TBAC polyamide layer. The S parameter for TETA-NTAC polyamide layer was also higher than that of the TETA-TBAC polyamide layer even though the former was more crosslinking than that of the latter. In the aqueous ethanol solution dehydration experiments, the TETA-NTAC/mPAN membrane produced both a higher permeation rate and water concentration in the permeate than the TETA-TBAC/mPAN membrane.  相似文献   

2.
Radiation-induced molecular imprinting of d-glucose onto poly(2-hydroxyethyl methacrylate) (HEMA) matrix was achieved to create three-dimensional cavities to recognize and bind glucose. Molecularly imprinted polymers (MIPs) were synthesized with different types of crosslinkers and varying amounts of template molecule in an attempt to elucidate the impact of imprint quantities on the effectiveness of imprinting technique. The crosslinking agents used in this study were diethylene glycol diacrylate (DEGDA), triethylene glycol dimethacrylate (TEGDMA) and polypropylene glycol dimethacrylate (PPGDMA) in the order of increasing chain length. Crosslinking agent concentration in the polymerization mixture (monomer, crosslinking agent and template) covered a range of 10, 20, 30, and 70 mol%. The mole ratio of template molecule, d-glucose to functional monomer, HEMA, was kept either as 1:3 or 1:6. The absorbed dose varied from 1 to 15 kGy. Control polymers were synthesized with exactly the same composition in the absence of d-glucose. Cavity sizes of MIPs were investigated by positron annihilation lifetime (PAL) measurements. A sandwich arrangement (sample-source-sample) was used. PAL experiments were carried out using a conventional fast-fast coincidence system having a time resolution (FWHM) of about 280 ps. Free-volume hole radii of samples were investigated in their dry and fully water swollen state.The results obtained from a systematic study of the effects of concentration and molecular size of the crosslinking agents, template to monomer ratio and irradiation dose experiments suggest that control of cavity size is feasible in nanometer scale by the optimization of these parameters revealed by means of (PAL) spectroscopy technique.  相似文献   

3.
The molecular orientation in thick polyethylene samples has been studied by wide-angle X-ray diffraction, i.r. dichroism and Raman spectroscopy. The original specimens, with dimensions of the order of a centimetre, were cut to obtain 1 mm thick platelets on which the measurements were made. The mean coefficient of the second-order Legendre polynomial, P2, was calculated from X-ray diffraction and from the 1894 cm−1 i.r. band for the crystalline phase, from the 909 cm−1 i.r. band for the vinyl end groups and from the 1130 and 1060 cm−1 Raman bands for the all-trans C-C conformers. The fourth-order coefficient, P4, was also determined from X-ray diffraction and Raman spectroscopy for a series of cylindrical rods of draw ratios (λ) ranging from 6 to 20. An excellent correlation is observed between the P2 coefficients measured from different X-ray reflections and from the 1894 cm−1 i.r. band. The Raman spectroscopy results show that the all-trans bonds located in the amorphous phase are aligned perpendicular to the extrusion direction for the λ = 6 rod, and gradually reorient towards the fibre axis for λ values up to 20, while the P2 and P4 coefficients calculated for the crystalline phase remain constant at λ ≥ 12. The variation of the orientation through the thickness of the samples was investigated for the cylindrical rods and for an H-shaped moulding produced by extrusion and rolling. Minor differences in the degree of molecular orientation were detected between the centre and the surface of the rods, whereas important variations were measured for the H-shaped sample.  相似文献   

4.
Cementitious materials derived from coal combustion by-products have been investigated by means of X-ray diffraction (XRD) and S and Ca K-edge X-ray absorption fine structure (XAFS) spectroscopy. The XRD analysis revealed that these materials are a complex mixture of a small amount of quartz [SiO2] and three calcium-bearing compounds: hannebachite [CaSO3·1/2H2O], gypsum [CaSO4·2H2O] and ettringite [(Ca6(Al(OH)6)2(SO4)3·26H2O)]. Analysis of the S XAFS data focused on deconvolution of the X-ray absorption near-edge structure (XANES) regions of the spectra. This analysis established that sulfate and sulfite are the two major sulfur forms, with a minor thiophenic component contained in unburned carbon in the fly ash. Increasing sulfate and decreasing sulfite correlated well with increasing gypsum and ettringite and decreasing hannebachite content in the samples. Different calcium compounds were identified primarily through simple comparison of the Ca K-edge XANES and radial structure functions (RSFs) of the cementitious samples with those of reference compounds. Because of the complex coordination chemistry of calcium in these materials, it was difficult to obtain detailed local atomic environment information around calcium beyond the first CaO peak. Analysis of the extended X-ray absorption fine structure (EXAFS) and the RSF gave average CaO distances in the range 2.44-2.5 Å, with each calcium atom surrounded roughly by eight oxygen atoms. In certain samples, the average CaO distances were close to that in ettringite (2.51 Å), suggesting that these samples have higher ettringite content. The results of S and Ca K-edges XAFS and the XRD data were in reasonable agreement.  相似文献   

5.
Relaxation processes of several kinds of polyethylene films and fibers with different molecular orientational degrees and crystallinities were extensively investigated by the dynamic mechanical relaxation, positron annihilation and 13C nuclear magnetic relaxation (13C NMR). From complex dynamic tensile modulus, the activation energies of α1 and α2 relaxations were determined to be 97-118 and 141-176 kJ/mol, respectively. The activation energy of β relaxation was 114-115 kJ/mol. These values were similar to those of α1 relaxation reported already. For γ relaxation mechanisms, there existed two mechanisms, γ1 and γ2, the activation energies being 9-11 and 23-25 kJ/mol, respectively. The values were independent of the molecular orientation and crystallinity. The two local motions indicate that non-crystalline phase composes of two regions of non-crystalline phase, rubber-like amorphous phase and interfacial-like amorphous phase. From 13C NMR measurements of 13C longitudinal relaxation time for the non-crystalline phase, the activation energy was 20.7 kJ/mol. This value is close to the activation energy (23-25 kJ/mol) of the γ2 relaxation estimated by the dynamic mechanical measurement. The result by 13C NMR did not provide two kinds of activation energy, indicating combined influence of the two correlation times. Even so, the activation energies obtained by 13C NMR indicated that the γ2 relaxation mainly is due to the motion of the C-C central bond of a short segment (e.g. three to four CH2) within interfacial-like amorphous phase. The γ and β relaxation peaks by the dynamic mechanical measurements corresponded to the first and second lifetime transition of ortho-positronium indicating, in turn, a drastic change in free volume by local mode relaxation.  相似文献   

6.
Transport paths for inhibitor release within a model strontium chromate (SrCrO4) inhibited/epoxy primer have been studied using a combination of tomography techniques. It has been found that the SrCrO4 particles form independent clusters within the model primer. The clusters have a range of fractal dimensions with the largest clusters (a few hundred microns in size) having a fractal dimension of 2.36. Leaching of the SrCrO4 from the primer appears to be initially through direct dissolution of particles in contact with the electrolyte but changes to diffusion through void pathways created by dissolution of the SrCrO4 phase. No evidence was found for the diffusion of chromate ions through the epoxy. Transport through such clusters does not follow Fickian diffusion, which has traditionally been employed to describe inhibitor release dynamics. Release kinetics typically follow a tm behaviour where t is time and m is an index which would be 0.5 for Fickian diffusion. Thus the overall release with time will evolve, being initially the result of direct dissolution, then at intermediate times, be dominated by transport through the fractal network and at the final stage go to zero since all the strontium chromate will be dissolved from the cluster connected to the surface. Clusters not connected to the surface remain undissolved and form additional reservoirs for further release in when local damage occurs in their vicinity. This new model of inhibitor transport creates new strategies for the development of self-healing properties for coatings.  相似文献   

7.
The effect of the incorporation of single‐walled carbon nanotubes (SWNTs) onto a diglycidyl ether of bisphenol A‐based (DGEBA) epoxy resin cure reaction was investigated by thermal analysis and Raman spectroscopy. The results of the investigation show that SWNTs act as a strong catalyst. A shift of the exothermic reaction peak to lower temperatures is, in fact, observed in the presence of SWNTs. Moreover, these effects are already noticeable at the lowest SWNT content investigated (5%) with slight further effects at higher concentrations, suggesting a saturation of the catalyzing action at the higher concentrations studied. The curves obtained under isothermal conditions confirm the results obtained in nonisothermal tests showing that the cure reaction takes less time with respect to the neat epoxy. The thermal degradation of cured DGEBA and DGEBA/SWNT composites was examined by thermogravimetry, showing a faster thermal degradation for DGEBA–SWNT composites. Raman spectroscopy was successfully applied to demonstrate that the observed changes in the cure reaction of the composites lead to a different residual strain on the SWNT bundles following a different intercalation of the epoxy matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 452–458, 2003  相似文献   

8.
Polyaniline (PANI) film electrodeposited in HCl medium using cyclic voltammetry (CV) with an upper potential limit of 0.90 V, exhibited an inductive behavior. PANI films deposited with different conditions were subjected to various applied potentials and the impedance characteristics were recorded through electrochemical impedance spectroscopy (EIS). The impedance results clearly reveal the existence of inductive behavior to PANI. Inductive behavior was observed for PANI films deposited with conditions which favor benzoquinone/hydroquinone (BQ/HQ) formation and further evidenced by X-ray photoelectron spectroscopy (XPS). A comparative analysis of the EIS and XPS results of PANI films prepared under similar conditions with the upper potential limits of 0.75 and 0.90 V, respectively, clearly documented that the presence of BQ/HQ, the degradation product of PANI, formed during the electrochemical polymerization at the upper potential limits causes inductive behavior to PANI.  相似文献   

9.
D.I. Bower  I.M. Ward 《Polymer》1982,23(5):645-649
Attempts to obtain quantitative measures of orientation on fibres of diameter ~ 10μm by the method used earlier on films were unsuccessful. This is believed to be due to polarization scrambling caused by reflection and refraction at the surface of the fibre. It is shown that by immersing the fibres in a liquid of refractive index equal to the mean of those of the fibre the method can be used successfully.  相似文献   

10.
《Ceramics International》2021,47(21):30391-30398
The reconstruction quality of a three-dimensional (3D) model of woven composites and the mechanical performance of minicomposites have an important influence on the accuracy of finite element (FE) analysis. Through edge detection and morphological operations, the cross-sectional area of a SiC/SiC minicomposite and the volume content of each component were calculated. This method can also be used to obtain the pore distribution. For the SiC/SiC two-dimensional (2D) woven composite, the structure tensor was used to initially classify the weft and warp in the top view of the X-ray computed tomography (XCT) image, and then, the front view was derived to readily correct the misclassification regions. The edge equivalent is proposed because watershed segmentation cannot compute the edge at the overlapping regions. Then, multiple morphological operations were applied to achieve accurate individual warp recognition. Finally, comparing the modulus predicted by the reconstructed FE model with the experimental results, the prediction was found to be in good agreement with the experiment.  相似文献   

11.
X-ray absorption near edge structure (XANES), utilizing both electron yield and X-ray fluorescence detectors, and X-ray photoelectron spectroscopy (XPS) were used to follow chloride uptake by oxide-covered aluminum in 0.1 M NaCl solutions. The aluminum samples were polarized at selected potentials below (less positive than) the pitting potential. The electron yield XANES and XPS showed multiple peaks. The XPS chloride spectra showed two distinct sets of doublets. One doublet is related to chloride on the surface and the second is related to chloride incorporated in the oxide film. The XANES results also showed two peaks which are attributed to chloride on the surface and in the bulk of the oxide.  相似文献   

12.
Sophisticated analytical methods (viz. wide-angle X-ray scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy have been applied to investigate the mechanism of toughening of epoxy cresol novolac resin due to the addition of carboxy-terminated polybutadiene (CTPB) liquid functional rubber. The average molecular interchain spacing 〈R〉 in Angstroms of neat epoxy and epoxy–rubber blends were calculated from the strong maximum in the diffraction scan using established equations. The half-width 〈HW〉 of the maximum was used to qualitatively describe the distribution of 〈R〉. An increase in 〈R〉 value signifies formation of a separate packing order, as well as an increase in the free volume which, however, varies with the extent of compatibilization between epoxy cresol novolac and CTPB. Fourier transform infrared studies convincingly establish the crosslinking between the oxirane group of epoxy and the carboxyl group of CTPB as reflected in the characteristic peak shifts in the blends, compared with individual polymers. The merger of several peaks of individual polymers, as well as the appearance of minor peaks elsewhere, were also evident. Scanning electron microscopy studies have also been undertaken to study the phase morphology development, as well as changes in the fracture surface topography with varied CTPB content. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 537–543, 1998  相似文献   

13.
This paper reports the characterization of unaged and aged melamine fibers using various characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal analysis. Since melamine fiber is a relatively new fiber, very few studies on its characterization have been made. Morphological studies of the fiber surface using SEM display die lines running along the filament surface, which are characteristics of synthetic fibers and generally occur during spinning of the molten prepolymer through the spinnerets. AFM studies show that the surface of a melamine fiber filament contains a large number of hills and valleys, which are triangular in shape. AFM roughness analysis shows that melamine fiber surface is considerably rough which may aid in adhesion of the fiber with polymeric matrices. Ageing causes an increase in the surface roughness with simultaneous increase in the crystallinity of the fiber from 19.4% to 22.6%. In XPS studies, high concentrations of carbonyl and hydroxyl groups on the filament surface have been detected. Ageing causes a reduction in the hydroxyl group concentration and an increase in the carbonyl group concentration due to surface oxidation. The reduction in the surface hydroxyl groups due to ageing has also been detected in the Fourier-Transform infrared (FT-IR) spectra of the aged fibers. Thermogravimetric (TG) studies reveal a high thermal stability of the melamine fiber even in an oxidative environment such as air.  相似文献   

14.
Anodic oxidation of molybdenum in weakly acidic, nearly neutral and weakly alkaline electrolytes was studied by voltammetric and electrochemical impedance spectroscopic measurements in a wide potential and pH range. Current vs. potential curves were found to exhibit two pseudo-Tafel regions suggesting two parallel pathways of the dissolution process. Electrochemical impedance spectra indicated the presence of at least two reaction intermediates. X-ray photoelectron spectroscopic (XPS) results pointed to the formation of an oxide containing Mo(IV), Mo(V) and Mo(VI), the exact ratio between different valence states depending on potential and pH of the solution. A physico-chemical model of the processes is proposed and a set of kinetic equations for the steady-state current vs. potential curve and the impedance response are derived. The model is found to reproduce quantitatively the current vs. potential curves and impedance spectra at a range of potentials and pH and to agree qualitatively with the XPS results. Subject to further improvement, the model could serve as a starting point for the optimization of the electrochemical fabrication of functional molybdenum oxide coatings.  相似文献   

15.
A series of semi‐interpenetrating polymer networks (SIPNs) of polyurethane (PU) and polyacrylonitrile (PAN) in the weight ratios 90/10, 70/30, 60/40 and 50/50 PU/PAN were prepared using polyethylene glycol, 4,4′‐diphenylmethane diisocyanate and acrylonitrile by sequential polymerization. Differential scanning calorimetry and scanning electron microscopy techniques were used to find the glass transition temperature and surface morphology of SIPNs. The tough and transparent SIPN films were characterized for physico‐mechanical properties such as density, surface hardness and tensile properties. Positron annihilation lifetime spectroscopy (PALS) was used to measure the free volume behaviour of the IPNs. The sorption behaviour of IPNs with benzene penetrant was also measured. An attempt was made to correlate the PALS results with the mechanical and sorption properties of the SIPNs. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Non-graphitic carbon materials produced by pyrolyzing wood at temperatures from 400 to 2400 °C and various types of commercial carbon fibers were examined by X-ray diffraction and Raman spectroscopy. The specimens cover a wide range of crystallite sizes La, in particular also very small sizes below 2 nm. The X-ray data were evaluated using the Scherrer equation and by an advanced approach using full curve fitting. The ratio of the D/G band intensities was determined from the Raman data by different evaluation techniques. A critical assessment of the classical linear relationship between 1/La and the D/G ratio shows that the relationship breaks down for crystallite sizes below 2 nm in accordance with recent theoretical predictions. The results are compared with data from the literature, showing that there are additional discrepancies between the data from various carbon types at large La due to different methods of data evaluation.  相似文献   

17.
《Ceramics International》2023,49(7):10471-10480
Carbon fiber reinforced carbon matrix (C/C) composites have been used in aerospace applications due to their excellent performance. Exploring their failure mechanisms is a subject of extensive research. Nowadays, to obtain information about changes in the failure processes, a technology known as in situ X-ray computed tomography is used. In this paper, tensile loads were applied to 3D fine-woven punctured and needle-punched C/C composites perpendicular to the punctured and needle-punched directions. In situ X-ray computed tomography was employed to observe damage development, and digital volume correlation was used to assess the laboratory X-ray computed tomographs to measure local strains. Assimilation of pores is observed in C/C composites, with cracks evolving from original micro-pores. While fine-woven punctured C/C composites present an elegant linear failure, needle-punched C/C composites present a traditional non-linear failure. This difference is due to the different structures of the preforms. Furthermore, the C/C composites are weak at the sites where they are punctured or needle-punched.  相似文献   

18.
The original Doufas–McHugh two‐phase microstructural/constitutive model for stress‐induced crystallization is expanded to polyolefin systems and validated for its predictive capability of online Raman crystallinity and spinline tension data for two Dow homopolymer polypropylene resins. The material parameters—inputs to the model—are obtained from laboratory‐scale material characterization data, that is, oscillatory dynamic shear, rheotens (melt extensional rheology), and differential scanning calorimetry data. The same set of two stress‐induced crystallization material/molecular parameters are capable of predicting the crystallinity profiles along the spinline and fiber tension very well overall for a variety of industrial fabrication conditions. The model is capable of predicting the freeze point, which is shown, for the first time, to correlate very well with the measured stick point (i.e., the point in the spinline at which the fiber bundle converts from a solid‐like state to a liquid‐like state and sticks to a solid object such as a glass rod). The model quantitatively captures the effects of the take‐up speed, throughput, and melt flow rate on the crystallization rate of polypropylene due to stress‐induced crystallization effects. This validated modeling approach has been used to guide fiber spinning for rapid product development. The original Doufas–McHugh stress‐induced crystallization model is shown to be numerically robust for the simulation of steady polypropylene melt spinning over a wide range of processing conditions without issues of discontinuities due to the onset of the two‐phase constitutive formulation downstream of the die face, at which crystallization more realistically begins. Because of the capturing of the physics of polypropylene fiber spinning and the very good model predictive power, the approximations of the original Doufas–McHugh model are asserted to be reasonable. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Near‐infrared (NIR) diffuse reflectance (DR) spectra and Fourier‐transform (FT) Raman spectra were measured for 12 kinds of block and random poly(propylene) (PP) copolymers with different ethylene content in pellets and powder states to propose calibration models that predict the ethylene content in PP and to deepen the understanding of the NIR and Raman spectra of PP. Band assignments were proposed based calculation of the second derivatives of the original spectra, analysis of loadings and regression coefficient plots of principal component analysis (PCA) and principal component regression (PCR) (predicting the ethylene content) models, and comparison of the NIR and Raman spectra of PP with those of linear low‐density polyethylene (LLDPE) with short branches. PCR and partial least squares (PLS) regression were applied to the second derivatives of the NIR spectra and the NIR spectra after multiplicative scatter correction (MSC) to develop the calibration models. After MSC treatment, the original spectra yield slightly better results for the standard error of prediction (SEP) than the second derivatives. A plot of regression coefficients for the PCR model shows peaks due to the CH2 groups pointing upwards and those arising from the CH3 groups pointing downwards, clearly separating the bands due to CH3 and CH2 groups. For the Raman data, MSC and normalization were applied to the original spectra, and then PCR and PLS regression were carried out to build the models. The PLS regression for the normalized spectra yields the best results for the correlation coefficient and the SEP. Raman bands at 1438, 1296, and 1164 cm?1 play key roles in the prediction of the ethylene content in PP. The NIR chemometric evaluation of the data gave better results than those derived from the Raman spectra and chemometric analysis. Possible reasons for this observation are discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 616–625, 2003  相似文献   

20.
This study examined the compaction behavior of a green ceramic component with a complex shape formed by die pressing at 50 MPa using spray-dried alumina. Compared to a simple cylindrical sample, the sample with a complex shape revealed a higher degree of microstructural inhomogeneity and crack formation. Granule deformation and pore distribution at different sample locations were observed by optical microscopy after infiltrating liquid into the voids of a green compact. The refractive index of the immersion liquid should be different slightly from that of alumina for better observations. X-ray micro-computed tomography was also used to visualize the pore distribution and crack shape. Numerical simulations based on the Drucker-Prager/Cap model were performed to distinguish the stress and displacement distribution within the compact. The significant stress gradient at the crack initiation point could explain crack formation, whereas the application of a higher pressure resulted in a further increase in stress gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号