首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, polyether-grafted-epoxide polysiloxane (FEPMS) was synthesized via hydrosilylation among poly(methylhydrosiloxane) (PMHS), allyl polyoxyethylene polyoxypropylene ether (F6) and allyl glycidyl ether to modify Diglycidyl Ether of Bisphenol A (DGEBA). The morphology, thermal properties, and toughness of all cured samples were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and impact testing. Results indicated that grafted polysiloxane can be well dispersed in epoxy matrix, and the epoxy resin modified with FEPMS at relatively low addition levels exhibited higher thermal properties and improved toughness than the neat epoxy resin.  相似文献   

2.
A new curing agent based on palmitoleic acid methyl ester modified amine (PAMEA) for epoxy resin was synthesized and characterized. Diglycidyl ether of bisphenol A (DGEBA) epoxy resins cured with different content of PAMEA along with diethylenetriamine (DETA) were prepared. The mechanical properties, dynamic mechanical properties, thermal properties, and morphology were investigated. The results indicated that the PAMEA curing agent can improve the impact strength of the cured epoxy resins considerably in comparison with the DETA curing agent, while the modulus and strength of the cured resin can also be improved slightly. When the PAMEA/epoxy resin weight ratio is 30/100, the comprehensive mechanical properties of the cured epoxy resin are optimal; at the same time, the crosslinking density and glass transition temperature of the cured epoxy resin are maximal.  相似文献   

3.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

4.
In order to improve the flexibility properties of conventional epoxy resin, two novel soybean oil–based curing agents were synthesized. The curing agent obtained from the reaction between epoxy soybean oil and ethylene diamine was named EEDA, and another curing agent derived from epoxy soybean oil and isophorone diamine was named EIPDA. Several techniques were used to systematically investigate the effects of the structure and content of the two curing agents on the properties of the cured products. The Fourier transform infrared analysis demonstrated that epoxy resin reacted with soybean oil–based curing agents. The differential scanning calorimetry analysis showed that the curing process between diglycidyl ether of bisphenol‐A (DGEBA) and soybean oil–based curing agents only had an exothermic peak. Thermogravimetric analysis indicated that the cured DGEBA/EIPDA system was more stable than the DGEBA/EEDA system below 300 °C. Mechanical tests and Shore D hardness tests suggested that excessive EEDA greatly enhanced the toughness of cured products because of the introduction of aliphatic chains.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44754.  相似文献   

5.
An intercrosslinked network of polysulfone (PSF)—bismaleimide (BMI) modified epoxy matrix system was made by using diglycidyl ether of bisphenol A (DGEBA) epoxy resin, hydroxyl terminated polysulfone and bismaleimide (3,3′‐bis(maleimidophenyl) phenylphosphine oxide) with diaminodiphenylmethane (DDM) as curing agent. BMI–PSF–epoxy matrices were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and heat deflection temperature (HDT) analysis. The matrices, in the form of castings, were characterized for their mechanical properties such as tensile strength, flexural strength, and unnotched Izod impact test as per ASTM methods. Mechanical studies indicated that the introduction of polysulfone into epoxy resin improves the toughness to an appreciable extent with insignificant increase in stress–strain properties. DSC studies indicated that the introduction of polysulfone decreases the glass transition temperature, whereas the incorporation of bismaleimide into epoxy resin influences the mechanical and thermal properties according to its percentage content. DSC thermograms of polysulfone as well as BMI modified epoxy resin show a unimodal reaction exotherm. The thermal stability and flame retardant properties of cured epoxy resins were improved with the introduction of bismaleimide and polysulfone. Water absorption characteristics were studied as per ASTM method and the morphology of the BMI modified epoxy and PSF‐epoxy systems were studied by scanning electron microscope. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
Poly(ether sulfone imide)s (PEI) with molecular weight Mn ∼ 104 were synthesized from 3,3′,4,4′-benzophenone tetracarboxylic dianhydride and amine terminated poly(ether sulfone) having molecular weights ranging from Mn ∼ 400 to Mn ∼ 4000. Thus, the PEIs had the same molecular weight but various imide and ether sulfone contents. The PEIs were mixed with a stoichiometric mixture of diglycidyl ether bis-phenol-A (DGEBA)/diamino diphenyl sulfone (DDS). The effect of PEI on the curing reaction of DGEBA/DDS and the morphology of the polymer blend were studied by differential scanning calorimetry (DSC) and optical microscopy. In the DGEBA/DDS/PEI blend with a fixed PEI molecular weight and PEI concentration but with various imide content, the experimental data revealed the PEI with a higher content of ether sulfone had a lower Tg and a better compatibility with solvents and epoxy resins; the curing reaction rate of DGEBA/DDS/PEI was faster for PEI with a higher imide content; the DSC data of cured DGEBA/DDS/PEI showed two Tgs, indicating phase separation between PEI and cured epoxy resins; and the data of optical microscopy showed that the compatibility of PEI with epoxy resins increased with the content of ether sulfone in PEI. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Amine terminated poly(ether sulfone imide) (PESI) with various imide and ethersulfone contents but similar polymer molecular weights were blended with diglycidyletherbisphenol-A (DGEBA) and cured with diaminodiphenylsulfone (DDS). The imide group, a tertiary amine, is a catalyst of the curing reaction of DGEBA with DDS, but it is poorly compatible with uncured epoxy resin. The ethersulfone group is not a catalyst of the curing reaction of DGEBA with DDS, but it has a similar chemical structure as DDS and is compatible with epoxy resin while it is at a low degree of curing. Since PESIs used in this study had similar molecular weights, increasing imide content of PESI would reduce ethersulfone content. The influence of imide and ethersulfone contents of PESI on the phase separation and curing reaction of DGEBA/DDS/PESI blend was investigated using differential scanning calorimetry (DSC), time-resolved light scattering (TRLS), and polarized optical microscopy (POM). Though the imide group has a catalysis effect on the curing reaction of DGEBA with DDS, however, its poor compatibility with epoxy resin retards the curing reaction. Our experimental results revealed the morphology of the cured blends and the curing behavior was a compromise result of catalysis and compatibility of PESI with epoxy resin.  相似文献   

8.
The cure kinetics and morphology of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin modified with a poly (ether ether ketone) based on tertiary butyl hydroquinone (PEEK-T) cured with diamino diphenyl sulphone (DDS) were investigated using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical thermal analysis (DMTA). The results obtained from DSC were applied to autocatalytic and diffusion controlled kinetic models. The reaction mechanism broadly showed autocatalytic behaviour regardless of the presence of PEEK-T. At higher PEEK-T concentration, more diffusion controlled mechanism was observed. The rate of curing reaction decreased with increase in thermoplastic content and also with the lowering of curing temperature. The activation energies of the blends are higher than that of the neat resin. The blends showed a phase separated morphology. The dispersed phase showed a homogeneous particle size distribution. The Tg of the neat resin decreased with the decrease in cure temperature. Two Tg's corresponding to the epoxy rich and thermoplastic rich phases were observed in the dynamic mechanical spectrum. The storage modulus of 10 and 20 phr PEEK-T blends are found to be greater than the neat resin.  相似文献   

9.
The curing behaviour, chemorheology, morphology and dynamic mechanical properties of epoxy ? polyphenylene oxide (PPO) blends were investigated over a wide range of compositions. Two bisphenol A based di‐epoxides ? pure and oligomeric DGEBA ? were used and their cure with primary, tertiary and quaternary amines was studied. 4,4′‐methylenebis(3‐chloro‐2,6‐diethylaniline) (MCDEA) showed high levels of cure and gave the highest exotherm peak temperature, and so was chosen for blending studies. Similarly pure DGEBA was selected for blending due to its slower reaction rate because of the absence of accelerating hydroxyl groups. For the PPO:DGEBA340/MCDEA system, the reaction rate was reduced with increasing PPO content due to a dilution effect but the heat of reaction were not significantly affected. The rheological behaviour during cure indicated that phase separation occurred prior to gelation, followed by vitrification. The times for phase separation, gelation and vitrification increased with higher PPO levels due to a reduction in the rate of polymerization. Dynamic mechanical thermal analysis of PPO:DGEBA340/MCDEA clearly showed two glass transitions due to the presence of phase separated regions where the lower Tg corresponded to an epoxy‐rich phase and the higher Tg represented the PPO‐rich phase. SEM observations of the cured PPO:DGEBA340/MCDEA blends revealed PPO particles in an epoxy matrix for blends with 10 wt% PPO, co‐continuous morphology for the blend with 30 wt% PPO and epoxy‐rich particles dispersed in a PPO‐rich matrix for 40wt% and more PPO. © 2014 Society of Chemical Industry  相似文献   

10.
用DTA研究环氧树脂固化反应动力学   总被引:1,自引:0,他引:1  
本文用DTA和FIR研究双酚A二缩水甘油醚型环氧树脂与2-乙基-4-甲基咪唑固化反应动力学,探讨了固化反应的机理。结果表明:此固化反应是分步进行的。第一步是加成反应,第二步是催化聚合反应,由此确定适宜采用分段固化工艺。通过DTA曲线推得固化工艺温度,并计算固化反应各步活化能:E1=368kJ.mol-1,E2=539kJ.mol-1  相似文献   

11.
Summary: The epoxy copolymers containing sulfone groups, diglycidyl ether of bisphenol‐A – Bisphenol‐S (DGEBA‐S) were synthesized by a hot‐melt method. The thermal properties of the epoxy systems initiated by two cationic latent catalysts, i.e., N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH), were investigated by using a dynamic DSC, DMA, and TGA. The mechanical properties were measured by single‐edge‐notched (SEN) beam fracture toughness tests. As a result, the thermal stability and mechanical interfacial properties of the DGEBA‐S/catalyst system were found to be higher than those of the DGEBA/catalyst. This was probably due to the fact that the introduction of sulfone groups with a polar nature to the main chain of the epoxy resins led to an improvement of thermal stability and toughness of the cured epoxy copolymers.

Conversion of the epoxy/catalyst systems as a function of curing temperature.  相似文献   


12.
Mixtures of diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin with poly(4‐vinyl phenol) (PVPh) of various compositions were examined with a differential scanning calorimeter (DSC), using the curing agent 4,4′‐diaminodiphenylsulfone (DDS). The phase morphology of the cured epoxy blends and their curing mechanisms depended on the reactive additive, PVPh. Cured epoxy/PVPh blends exhibited network homogeneity based on a single glass transition temperature (Tg) over the whole composition range. Additionally, the morphology of these cured PVPh/epoxy blends exhibited a homogeneous network when observed by optical microscopy. Furthermore, the DDS‐cure of the epoxy blends with PVPh exhibited an autocatalytic mechanism. This was similar to the neat epoxy system, but the reaction rate of the epoxy/polymer blends exceeded that of neat epoxy. These results are mainly attributable to the chemical reactions between the epoxy and PVPh, and the regular reactions between DDS and epoxy. Polym. Eng. Sci. 45:1–10, 2005. © 2004 Society of Plastics Engineers.  相似文献   

13.
Various amounts of dicyandiamide (Dicy), two grades of epoxy resins, i.e. Epiran 06 and Epikote 828, and three different accelerators including benzyl dimethyl amine (BDMA), 3-(4-chlorophenyl)-1,1-dimethyl urea (Monuron) and 2-methyl imidazole (Im) were used in curing of Dicy/epoxy resin system. Both of the used epoxy resins were based on diglycidyl ether of bisphenol A (DGEBA). The effects of type and concentration of accelerators on curing behavior were studied by differential scanning calorimetry (DSC) method in dynamic or non-isothermal mode. The optimum concentration of Dicy for curing of epoxy resins was obtained based on the glass transition temperature of the cured epoxy/Dicy formulations. The maximum glass transition temperature of 139 °C was obtained at the stoichiometric ratio of Dicy to epoxy of 0.65. The results showed that BDMA has a broader curing peak in DSC and starts the cure reaction earlier than the others. However, Monuron has a narrow curing reaction peak with good cure latency. The tensile properties of Dicy-cured Epiran 06 and Epikote 828 epoxy resins reinforced with chopped strand mat showed that these two epoxy resins have similar mechanical properties. For composites based on the Epiran 06 and Epikote 828 reinforced with 40 wt % glass chopped strand mat, tensile strength and modulus were 156 and 153.4 MPa and 11.6 and 12.4 GPa, respectively.  相似文献   

14.
Curing kinetics and properties of epoxy resin-fluorenyl diamine systems   总被引:1,自引:0,他引:1  
Wenbin Liu  Qihao Qiu  Zichun Huo 《Polymer》2008,49(20):4399-4405
Diglycidyl ether of bisphenol fluorene (DGEBF), 9,9-bis-(4-aminophenyl)-fluorene (BPF) and 9,9-bis-(3-methyl-4-aminophenyl)-fluorene (BMAPF) were synthesized to introduce more aromatic structures into the epoxy systems, and their chemical structures were characterized with FTIR, NMR and MS analyses. The curing kinetics of fluorenyl diamines with different epoxy resins including DGEBF, cycloaliphatic epoxy resin (TDE-85) and diglycidyl ether of bisphenol A (DGEBA) was investigated using non-isothermal differential scanning calorimetry (DSC), and determined by Kissinger, Ozawa and Crane methods. The thermal properties of obtained polymers were evaluated with dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results show that the values of activation energy (Ea) are strongly dependent on the structures of epoxy resin and curing agent. The curing reactivity of epoxy system is restrained by the introduction of rigid fluorene into chain backbone and flexible methyl into side groups. The cured DGEBF/fluorenyl diamine systems exhibit remarkably higher glass transition temperature, better thermal stability and lower moisture absorption compared to those of DGEBA/fluorenyl diamine systems, and display approximate heat resistance and much better moisture resistance relative to those of TDE-85/fluorenyl diamine systems.  相似文献   

15.
The diglycidyl ether of bisphenol-A (DGEBA) resin was modified with amine functional aniline acetaldehyde condensate (AFAAC) and cured with an ambient temperature curing agent triethylene tetramine. The resulting networks displayed significantly improved fracture toughness. The AFAAC was synthesized by the condensation reaction of aniline and acetaldehyde in the acid medium (pH 4) and characterized by FTIR and NMR spectroscopy, elemental analysis, viscosity measurements, and mole of primary and secondary amine analysis. The DGEBA and AFAAC were molecularly miscible but developed a two-phase microstructure upon network formation. Epoxy/AFAAC compositions were systematically varied to study the effect of AFAAC concentration on the impact, adhesive, tensile, and flexural properties of modified networks. The dynamic mechanical analysis and scanning electron microscopy studies showed two phase morphology in the cured networks, where AFAAC particles were dispersed. The AFAAC modified epoxy network was thermally stable up to around 280°C. POLYM. ENG. SCI., 47:1695–1702, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
DGEBA (diglycidyl ether of bisphenol A)–ATBN (amine terminated butadiene acrylonitrile copolymer) blends exhibited upper critical solution temperature (UCST) behavior. Triethylene tetramine (TETA) was introduced as an amine curing agent of epoxy. The real-time phase separation behavior of ATBN-added epoxy system during cure was investigated using laser light scattering. SEM (scanning electron microscopy) and optical microscopy were also employed to observe the morphology of the epoxy blends. Since the DGEBA–ATBN blends showed UCST behavior, the degree of phase separation when cured at low temperature was higher than that when cured at high temperature. The domain correlation length increased as the curing temperature was lowered. Dynamic mechanical analysis (DMA) results indicated that the phase inversion occurred above 20 wt% of ATBN composition.  相似文献   

17.
New curing agents 2,5-diamino-1,3,4-thiadiazole (DATD) and N-(4-hydroxybenzal) N'(4′-hydroxyphenyl) thiourea (HHPT) were synthesised and characterized using FT-IR, 1H-NMR and 13C-NMR analysis. The curing reactions were studied for the epoxy resin diglycidyl ether of bisphenol-A (DGEBA) using new curing agents along with the conventional aromatic diamine 4,4′-diamino diphenyl methane (DDM) for comparison purpose. The curing profiles of DDM, DATD and DATD/HHPT towards DGEBA were examined by Differential Scanning Calorimetry (DSC). Elastic modulus and thermal stability of the cured resins were evaluated using DMA and TGA analysis. When compared with DDM and DATD, the DATD/HHPT curing system accelerated the curing rate due to the presence of phenol molecules in the HHPT. Furthermore, the DATD/HHPT-cured epoxy resin demonstrated higher elastic modulus along with better thermal stability.  相似文献   

18.
A high‐performance difunctional epoxy resin, 4‐(4‐hydroxyphenoxy)phenol diglycidyl ether (DHPOP), was synthesized by a two‐step method. The curing behavior of DHPOP was investigated by nonisothermal differential scanning calorimetry method and the curing kinetics results revealed that the introduction of ether linkage could improve the activity of epoxy groups, leading to a lower curing temperature and apparent activation energy compared with that of the commercial bisphenol‐A diglycidyl ether (DGEBA). A series of copolymers were then prepared by varying the mass ratio of DHPOP and DGEBA, which were cured with 4,4′‐diaminodiphenyl methane. The effect of DHPOP contents on thermal and mechanical properties and fracture morphology was studied. As expected, with the increase of DHPOP in the network, the impact strength and char yield were significantly enhanced, while the glass transition temperature (Tg) remained unchanged because of the increase of crosslink density. The excellent toughness endows the DHPOP with the promising potential for the application as high‐performance resin matrix. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46458.  相似文献   

19.
Epoxy matrices are successfully used for structural strengthening in civil engineering applications by means of carbon fiber reinforced polymers (CFRPs). In the context of sustainable development, the aim of this study is to develop biobased epoxy matrices as an alternative to the traditional petroleum‐based epoxy matrices used in CFRPs. This study focuses on two biobased epoxy monomers: a diglycidyl ether of bisphenol A (DGEBA) and a sorbitol polyglycidyl ether (SPGE). These monomers are reacted with a biobased curing agent, a phenalkamine (PhA), derived from cardanol. After in‐depth characterization of the chemical structures of the three monomers, the reactivity of both systems, DGEBA‐PhA and SPGE‐PhA, is studied using differential scanning calorimetry and rheology. The properties of the networks are characterized via dynamic mechanical analysis and water uptake measurements for polymers with partial or full conversion of epoxy groups, which are obtained by crosslinking at room temperature or at high temperature, respectively. The results reveal that the two systems are good candidates for the preparation of green composite materials as they meet the requirements necessary for manufacturing composites in civil engineering applications.  相似文献   

20.
Jianhua Li 《Polymer》2009,50(6):1526-1030
Macroporous epoxy monolith was prepared via chemically induced phase separation using diglycidyl ether of bisphenol A (DGEBA) as a monomer, 4,4′-diaminodiphenylmethane (DDM) as a curing agent, and epoxy soybean oil (ESO) as a solvent. The morphology of the cured systems after removal of ESO was examined using scanning electron microscopy, and the composition of epoxy precursors/solvent for phase inversion was determined. The phase-separation mechanism was deduced from the optic microscopic images to be spinodal decomposition. The pore structure of the cured monolith was controlled by a competition between the rates of curing and phase separation. The ESO concentration, content of curing agent, and the curing temperature constituted the influencing factors on the porous morphology. The average pore size increased with increasing ESO concentration, increasing curing temperature, and decreasing the content of curing agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号