首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(7):8627-8635
Single-phase M-type hexagonal ferrites, SrBixFe12−xO19 (0.0≤x≤1.0), were prepared by a co-precipitation assisted ceramic route. The influence of the Bi3+ substitution on the crystallization of ferrite phase has been examined using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. The XRD data show that the nanoparticles crystallize in the single hexagonal magnetoplumbite phase with the crystallite size varying between 65 and 82 nm. A systematic change in the lattice constants, a=b and c, was observed because of the ionic radius of Bi3+ (1.17 Å) being larger than that of Fe3+ ion (0.64 Å). SEM analysis indicated the hexagonal shape morphology of products. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi substitutions have been determined.  相似文献   

2.
《Ceramics International》2015,41(8):9931-9938
Li–Sr–Zn nanoferrites i.e. Li0.25Sr0.5–xZnxFe2.25O4, where ‘x’ varies from 0–0.5, have been synthesized using a low temperature solution combustion method which proves to be an efficient and economical technique for synthesizing these type of nanoferrites. The as-synthesized nanoferrites have cubic spinel structure as characterized by X-ray powder diffraction. Powder XRD and TEM (Transmission Electron Microscopy) characterization also evidence that the crystallite and particle size are in close agreement to each other. Mössbauer spectroscopy studies demonstrate that there is a gradual transition from ferrimagnetic to superparamagnetic character, which is also supported by the saturation magnetization and coercivity values. At room temperature, the nanoferrites were found to be superparamagnetic with negligible coercivities approaching towards zero while saturation magnetization values were found to be in the range 6.87–30.10 emu g−1. The frequency dependent dielectric constant and loss values are in accordance with Koop׳s model. These nanoferrites show great potential in high density recordings, magnetic nanodevices and biomagnetic applications.  相似文献   

3.
《Ceramics International》2016,42(5):5650-5658
Copper substituted Fe3O4 nanoparticles (NPs) (CuxFe1−xFe2O4 (0.0≤x≤1.0)) were synthesized by polyol method and the effect of Cu2+ substitution on structural, magnetic and optical properties of Fe3O4 was investigated. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), UV–Visible spectroscopy and Vibrating sample magnetometer (VSM) were used to study the physical properties of the products. The room temperature (RT) magnetization (σH) curves revealed the superparamagnetic nature of the products. The extrapolated specific saturation magnetization (σs) decreases from 42.69 emu/g to 14.14 emu/g with increasing Cu content (x). The particle size dependent Langevin fit studies were applied to determine the magnetic particle dimensions (Dmag). The average magnetic particle diameter is about 9.89 nm. The observed magnetic moments of NPs are in range of (0.61–1.77) µB and rather less than 4 µB of bulk Fe3O4 and 1 µB of bulk CuFe2O4. Magnetic anisotropy was assigned as uniaxial and calculated effective anisotropy constants (Keff) are between 10.89×104 Erg/g and 26.95×104 Erg/g. The average value of magnetically inactive layer for CuxFe1−xFe2O4 NPs was calculated as 1.23 nm. The percent diffuse reflectance spectroscopy (DR%) and Kubelka–Munk theory were applied to determine the energy band gap (Eg) of NPs. The extrapolated optical Eg values from Tauc plots are between minimum 1.98 eV to 2.31 eV. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer splitting, quadrupole splitting and hyperfine magnetic field values on Cu+2 ion substitution have been determined. Although, the Mössbauer spectra for the sample x=0.2 and 0.8 are composed of paramagnetic doublets, ferromagnetic sextets were also formed for other products.  相似文献   

4.
《Catalysis communications》2011,16(1):127-131
The effect of introduction of iron in the Co3  xFexO4 on catalytic activity in N2O decomposition was investigated. The spinel catalysts were characterized by XRD, SEM, RS, BET methods, work function measurements and Mössbauer spectroscopy. Introduction of iron in the Co3  xFexO4 spinel catalysts at the level of x < 1 leads to preferential substitution of Fe3+ in tetrahedral sites, whereas for x > 1 also octahedral ones are substituted. A strong correlation between deN2O activity (T50%) and work function was observed showing that electronic factor controls the catalytic reactivity of Co–Fe spinels. The results revealed that the active centers for N2O decomposition are cobalt ions and thus even a low level of their substitution by iron leads to substantial decrease of the deN2O activity of the cobalt spinel.  相似文献   

5.
《Ceramics International》2016,42(9):10565-10571
Zinc substituted magnesium (Mg–Zn) ferrites with the general formula Mg1−xZnxFe2O4 (x=0.00, 0.25, 0.50, 0.75, and 1.00) were prepared using the solution combustion route. The dried powder after calcination (700 °C for 2 h) was compacted and sintered at 1050 °C for 3 h. The structural, morphological, dielectric and magnetic properties of the sintered ferrites were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), impedance spectroscopy, and vibration sample magnetometry (VSM). The XRD analysis of sintered samples confirmed that the expected spinel cubic phase was formed for all samples. The crystallite sizes evaluated using Scherre's formula were found to be in the range of 47–80 nm. SEM analysis showed homogeneous grains with a polyhedral structure. The electrical conductivity increased with increasing frequency, which is normal dielectric behavior for such materials. The dielectric constant, dielectric loss tangent, and AC conductivity were found to be lowest for x=0.50. The VSM results showed that the zinc concentration had a significant influence on the saturation magnetization and coercivity.  相似文献   

6.
《Ceramics International》2017,43(11):7984-7991
Co-precipitated and 800 °C heat treated Ni-Cu-Zn nanoferrites with chemical formula NixCu0.1Zn0.9-xFe2O4 (x=0.5, 0.6, 0.7) were prepared because of their potential use as multilayer chip inductors in electromagnetic applications. Their structural, magnetic properties and phase formation were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE–SEM), vibrating sample magnetometer (VSM), Mössbauer spectrometer, thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC). The XRD patterns confirm the cubic spinel structure of the ferrite phase belonging to Fd3m space group. Lattice parameters and cation distributions were obtained by Rietveld refinement of the XRD patterns. The lattice parameter decreases with increase in Ni2+ ion concentration. Rietveld analysis indicates that Cu2+ ions predominantly occupy the B-sites and Ni2+ ions partly going into B-sites but predominantly into A-sites. An excellent agreement is observed between the experimental lattice parameters and lattice parameters theoretically calculated using this cation redistribution. The inversion parameter (λ) observed for Fe3+ ions by Mössbauer spectroscopy is different from that of Rietveld analysis. Magnetization and Mössbauer spectroscopic measurements indicate that the ferrite nanoparticles are mostly superparamagnetic. The cation redistribution is supposed to alter the magnetocrystalline anisotropy which in turn affects the magnetic parameters of the present ferrite samples. The reduced magnetization is attributed to core-shell interactions and possible canting of A- and B-shell magnetizations. TGA-DSC studies indicate that ferrite formation in the 800 °C heat treated samples is completed but grain growth increases as the particles are subject to the increased temperature.  相似文献   

7.
A black pigment was synthesised based on FexCr2−xO3 stoichiometry, by studying the compositions with x = 0.15, 0.20, 0.50, 1.00, 1.20, 1.30, 1.50, 1.80 and 1.85 and using industrial grade reagents as raw materials. The resulting products were compared with a pigment made using chemically pure (CP grade) reagents in order to establish the most appropriate reagents for achieving minimum Cr(VI) segregation during the pigment washing stage, and comparable chromatic qualities of a standard industrial pigment. X-ray diffraction (XRD) indicates a solid solution formation based on the haematite structure; however, X-ray photoelectron spectroscopy (XPS) and Mössbauer analysis indicate the presence of a phase containing Fe(II) undetected by XRD. A smaller Cr(VI) content was found in the washing liquids when industrial grade reagents were used, but the resulting chromatic quality was poorer than that obtained for the same composition when made with CP grade raw materials.  相似文献   

8.
《Ceramics International》2017,43(6):4746-4752
Co1-2xNixMnxFe2O4 (0.0≤x≤0.5) nanoparticles (NPs) were prepared via citrate assisted microwave combustion route. XRD analysis confirmed the cubic structure (spinel) of all samples. Average crystallite size of products (obtained from (311) diffraction line) was in the range of 32.9–43.4 nm. The intense peak appearing at around 531 cm−1 in FT-IR was attributed to the formation of a spinel ferrite. Magnetic properties of the products were investigated by room temperature vibrating sample magnetometer and Mössbauer spectroscopy. The magnetic parameters have been found to strongly depend on the Ni and Mn concentrations. The saturation magnetization continuously decreases with the increasing of the concentration (x). We found that Ni0.5Mn0.5Fe2O4 NP has superparamagnetic character at room temperature. This result was also verified by Mössbauer analysis. Scanning electron microscopic analysis revealed the cubic morphology of all products, EDX and elemental mapping analyses confirmed the expected composition of each product.  相似文献   

9.
《Ceramics International》2015,41(7):8637-8642
Manganese ferrite nanoparticles were electro-crystallized in an electrochemical cell containing two iron electrodes, and an electrolyte solution of sodium sulfate, sodium butanoate, and manganese sulfate hydrate. The samples were characterized by X-ray diffraction, electron microscopy, magnetometry, and Mössbauer spectroscopy methods. The crystal structure of the samples was studied using X-ray diffraction. Based on obtained results we found that the manganese ferrite nanoparticles are formed in the electrochemical cell containing 0.001 M manganese sulfate hydrate. Also, the formation of a paramagnetic secondary phase in the sample without manganese is suppressed by adding manganese salt in the electrochemical cell. The nanoparticle size, shape, and morphology were characterized using electron microscopy. Magnetization curves show that all samples are magnetically soft and their specific magnetization ranges from 15 A m2 kg−1 to 75 A m2 kg−1, depending on the growth conditions. Room temperature Mössbauer spectra confirm the formation of nonstoichiometric spinel ferrite of magnetite or manganese ferrite, again depending on the growth conditions. Based on Mössbauer analysis, reduction in the population of octahedral sites provides direct evidence for the presence of the manganese ions substitution in the octahedral sites.  相似文献   

10.
《Ceramics International》2007,33(6):1105-1109
Stoichiometric and monophasic Ba1−xSrxTiO3 (x = 0.3) nanopowders were successfully prepared by the citric acid gel method using barium nitrate, strontium nitrate and tetra-n-butyl titanate as Ba, Sr, Ti sources and citric acid as complexing reagent. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared (IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the thermal decomposition behavior, the crystallization process and the particle size and morphology of the calcined powders. The results indicated that single-phase and well-crystallized Ba1−xSrxTiO3 (x = 0.3) nanopowders with particle size around 80 nm could be obtained after calcining the dried gel at 950 °C for 2 h.  相似文献   

11.
This paper reports microstructural studies of single-phase Mn3−xCoxO4 (0.98  x  2.93) spinel ceramics using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). These ceramics were obtained by conventional sintering or by spark plasma sintering (SPS) of powders prepared by thermal decomposition of coprecipitated oxalate precursors. For x < 1.78 or x  1.78, the monophasic ceramics correspond respectively to quadratic (Q) or cubic (C) spinel structure. The ferroelastic character of the structural phase transition from C to Q is highlighted by specific microstructural features. The effect of chemical composition and heat treatment conditions on the microstructure and essentially on the presence and the characteristics of twins were investigated. The coherent twin interfaces are parallel to (1 1 2) planes in the Q cell. Twins can correspond to: tweeds, single lamellae (widths: 5–306 nm) arranged parallel to each other, large lamellae (widths: 69–928 nm) internally twinned and sometimes arranged in cyclic forms (triangular shapes).  相似文献   

12.
《Ceramics International》2016,42(4):4754-4763
Manganese substituted nickel ferrites, Ni1−xMnxFe2O4 (x=0, 0.3, 0.5 and 0.7) have been obtained by a combined method, heat treatment and subsequent mechanical milling. The samples were characterised by X-ray diffraction, differential scanning calorimetry and magnetic measurements. The increase of the Mn2+ cations amount into the spinel structure leads to a significant expansion of the cubic spinel structure lattice parameter. The crystallite size decreases with increasing milling time up to 120 min, more rapidly for the nickel–manganese ferrites with a large amount of Mn2+ cations (x=0.7). After only 15 min of milling the mean crystallites size is less than 25 nm for all synthesised ferrites. The Néel temperature decreases by increasing Mn2+ cation amount from 585 °C for x=0 up to 380 °C for x=0.7. The magnetisation of the ferrite increases by introducing more manganese cations into the spinel structure. The magnetisation of the milled samples decreases by increasing milling time for each ratio among Ni and Mn cations and tends to be difficult to saturate, a behaviour assigned to the spin canted effect.  相似文献   

13.
《Ceramics International》2016,42(8):9402-9412
Cobalt chromite based pigments Co1−xMxCr2O4 (M=Ni, Cu, and Zn) with different transition metal concentrations (0≤x≤1 with a step of 0.25) have been synthesized applying two aqueous synthesis approaches: sol–gel and sonochemical synthesis routes. The heat treatment of precursor powders was performed between 600 and 800 °C. XRD analysis of the obtained powders revealed that all samples fabricated by sol–gel method have crystallised in a spinel structure, whereas sonochemical synthesis of Ni chromite at lower calcination temperatures showed the formation of mixtures of oxides. In addition, the degree of crystallinity and shaping of sonochemically obtained compounds is lower than sol–gel derived products. The chromites with a higher nickel concentration displayed green colour, while Cu-substituted pigments were nearly black. The spinels with a higher Zn amount were yellowish green.  相似文献   

14.
This paper addresses the potential of mechanochemical activation of MgO and α-Fe2O3 precursor powders to obtain Fe2.3Mg0.7O4 ceramics with enhanced redox stability and electrical conductivity. X-ray diffraction (XRD) and Mössbauer spectroscopy suggest the initial formation of the spinel phase after 5 h of high-energy milling in inert gas, but after 10 h of mechanoactivation, the precursor still comprised hematite as a major phase with minor amounts of magnesiowustite as by-product. The activated mixtures can be nearly completely converted to spinel solid solution by heating to 1173 K, whereas single-phase, dense spinel ceramics can be prepared by sintering at 1773 K in inert atmosphere. These ceramics demonstrated redox stability under mildly reducing conditions (p(O2)  10 Pa), as confirmed by XRD, thermogravimetry and electrical measurements. The electrical conductivity of Fe2.3Mg0.7O4 at this oxygen partial pressure is lower compared to magnetite, but it is still as high as 60 S/cm at 1073 K and 15 S/cm at room temperature. Cooling below 1473 K in air results in a drop of conductivity due to segregation of hematite phase at the grain boundaries. However, the phase separation is kinetically stagnated at 1073 K, and, after slight initial degradation, the retained electrical conductivity is more than 3 orders of magnitude higher compared to hematite and MgFe2O4 spinel.  相似文献   

15.
《Ceramics International》2016,42(13):14475-14489
Sol-gel auto-combustion route using sucrose as fuel has been employed to synthesize nanocrystalline particles of SrZrxCoxFe(12−2x)O19 (0.0≤ x ≤1.0). The characterization of these materials has been done by TGA-DTA, FT-IR, XRD and EDS. SEM and TEM techniques have been used to study the structure and morphology. Magnetic properties have been investigated by VSM and Mössbauer spectroscopy (MS). The influence of calcination temperature on morphology and magnetic properties of samples is studied in a wide temperature range of 500–1100 °C. XRD analysis indicates the formation of pure single phase hexagonal ferrites at 900 °C. The crystallite size calculated using Scherrer equation lies in a narrow range of 21–33 nm. The crystallite size is small enough to obtain a suitable signal to noise ratio in high density recording medium. Substitution of Zr and Co for Fe has been found to have a profound effect on the structural, magnetic and electrical properties. Upon substitution saturation magnetization (MS) first increases from 62.67 emu/g to 64.84 emu/g (up to x=0.4) followed by a decrease to 49.71 emu/g at x=1.0. There is a slow fall in coercivity (HC) from 5785.74 (x=0.0) to 1796.51 Oe (x=1.0). Dielectric constant, dielectric loss tangent and AC conductivity in the frequency range 20 Hz to 120 MHz have been studied for all the compositions (x=0–1.0). The composition and frequency dependence of these dielectric parameters has been qualitatively explained.  相似文献   

16.
Nano-cobalt–zinc ferrite (CZFO) Co(1?x)ZnxFe2O4 with varied quantities of zinc (x = 0.0, 0.1, 0.2, 0.3, 0.4) have been prepared by solution combustion method. X-ray diffraction and transmission electron microscopy confirmed the size, structure and morphology of the nanoferrites. The addition of zinc in cobalt ferrite has been shown to play a crucial role in enhancing the magnetic properties. Ferromagnetic ordering is observed in nano samples at room temperature. Zn substitution shows maximum saturation magnetization for x = 0.1, that is 56.74 emu/g and then decreases for further increase in Zn substitution. The dependence of Mössbauer parameters viz. isomer shift and hyperfine magnetic field with zinc concentration has been studied. Mössbauer results are also supported by magnetization data. The results obtained from this method make these samples suitable for preparing high quality nanocrystalline ferrite for high density data storage applications.  相似文献   

17.
《Ceramics International》2015,41(4):5531-5536
In this study, we investigated the effects of substituting Mn3+ for some Fe3+ in spinel lattice on the structure, magnetic properties, magnetostriction behavior, and AC impedance characteristics of cobalt ferrites. The manganese substituted cobalt ferrites (Co–Mn ferrites), CoMnxFe2−xO4, with x varied from 0 to 0.3 in 0.1 increments, were prepared by solid-state reaction. XRD examination confirmed that all sintered Co-based ferrites had a single-phase spinel structure. The average grain size, obtained from SEM micrographs, increased from 8.2 μm to 12.5 μm as the Mn content (x) increased from 0 to 0.3. Both the Curie temperature and coercivity of Co-based ferrites decreased with greater amounts of Mn, while the maximum magnetization (at H=6 kOe) of Mn-substituted cobalt ferrites was larger than that of the pure Co-ferrite. Magnetostrictive properties revealed that the pure Co-ferrite had the largest saturation magnetostriction (λS), about −167 ppm, and the CoMn0.2Fe1.8O4 sample exhibited the highest strain sensitivity (|dλ/dH|m) of 2.23×10−9 A−1m among all as-prepared Co-based ferrites. In addition, AC impedance spectra analysis revealed that the real part (Z′) of the complex impedance of Co–Mn ferrites was lower than that of pure Co-ferrite in the low frequency region, and the Co-based ferrites exhibited semiconductor-like behavior.  相似文献   

18.
《Ceramics International》2017,43(5):4042-4047
In this study we report on the successful synthesis of GdxFe3−xO4 nanoparticles with nominal Gd-content (x) in the range 0.00≤x≤0.50. The effect of the nominal Gd-content on morphological, structural and magnetic properties was investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and Mössbauer spectroscopy. We found the actual inclusion of Gd3+ ions into cubic ferrite structure lower than the nominal values, though no extra phase was observed in the whole range of our investigation. Moreover, from Mössbauer data we found evidences of Gd3+ ions replacing both Fe3+ and Fe2+ ions, the latter leading to iron vacancies in the cubic ferrite crystal structure. As the nominal Gd-content, the lattice parameter and the average crystallite size increases monotonically. We found that in the same range of nominal Gd-content the lattice parameter decreases with the increase of iron vacancy content.  相似文献   

19.
Series of the ferrite samples with a chemical formula Ni0.7Zn0.3CrxFe2?xO4 (x = 0.0–0.5) were prepared by a sol–gel auto-combustion method and annealed at 600 °C for 4 h. The prepared samples have the cubic spinel structure with no impurity phase. As the Cr3+ content x increases, the unit cell dimensions decrease with an increase in Cr3+ content x. The crystallite size is decreases from 37 nm to 21 nm as the Cr3+ content increases from x = 0.0 to 0.5. Resistivity increases whereas dielectric constant decreases with an increase in Cr3+ content x. Maxima in the dielectric loss tangent versus frequency appear when the frequency of the hopping charge carriers coincides with the frequency of the applied alternating field. Dielectric constant and dielectric loss tangent increases with increase in temperature. Saturation magnetization of sintered samples showed higher values as compared to as-prepared sample. Curie temperature deduced from AC susceptibility data decreases with increasing x.  相似文献   

20.
《Ceramics International》2015,41(4):5414-5420
Zn1−xCdxO films with different Cd contents (0≤x≤1) were successfully deposited on quartz substrates by the direct current reactive magnetron sputtering and post-annealing techniques. It was found that structures, band gaps and electrical properties of the films can be tuned by changing Cd contents x. The Zn1−xCdxO film consists of wurtzite phase with highly (002)-preferred orientation at x from 0 to 0.2, mixture of wurtzite and cubic phases at x=0.5, and cubic phase with highly (200)-preferred orientation at x≥0.8. The band gap decreases from 3.25 eV at x=0 to 2.75 eV at x=0.2 for the wurtzite Zn1−xCdxO, and decreases from 2.52 eV at x=0.8 to 2.42 eV at x=1, which has a little change for cubic Zn1−xCdxO. In addition, Hall measurement results indicate that the influence of Cd content on the conduction behavior of Zn1−xCdxO films is significant. The chemical compositions and the bonding states of Zn1−xCdxO films were examined by X-ray photoelectron spectroscopy analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号