首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the joining of interstitial free steel and commercial pure aluminium was carried out by friction stir welding (FSW) technique using tool rotational speeds of 600, 900, 1200 rpm and traverse speed of 100 mm/min. The microstructure and micro-hardness of the weld interface have been investigated. Optical microscopy was used to characterize the microstructures of different regions of friction stir welding joints. The scanning electron microscopy-back scattered electron (SEM-BSE) images show the existence of the different reaction layers in the welded zone. The Al3Fe intermetallic compound has been observed in the weld interface and their thickness increase with the increase in tool rotational speed. Tensile strength was also evaluated and maximum tensile strength of ∼123.2 MPa along with ∼4.5% elongation at fracture of the joint have been obtained when processed at 600 rpm tool rotational speed.  相似文献   

2.
Friction spot welding (FSpW) is a relatively new solid state joining technology developed by GKSS. In the present study, FSpW was applied to join the 6061-T4 aluminum alloy sheet with 2 mm thickness. The microstructure of the weld can be classified into four regions, which are stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and the base material (BM), respectively. Meanwhile, defects such as bonding ligament, hook and voids are found in the weld, which are associated to the material flow. The hardness profile of the weld exhibits a W-shaped appearance and the minimum hardness is measured at the boundary of TMAZ and SZ. Both the tensile/shear strength and cross-tension strength reach the maximum of 7117.0 N and 4555.4 N at the welding condition of the rotational speed of 1500 rpm and duration time of 4 s. Compared to cross-tension strength, the tensile/shear strength were stable with the variation of processing parameters. Three different fracture modes are observed under tensile/shear loading, which are plug type fracture, shear fracture and plug-shear fracture. There are also there different fracture modes under cross-tension loading, which are plug type fracture (on the upper sheet), nugget debonding and plug type fracture (on the lower sheet).  相似文献   

3.
Development of welding procedures to join aluminum matrix composite (AMCs) holds the key to replace conventional aluminum alloys in many applications. In this research work, AA6061/B4C AMC was produced using stir casting route with the aid of K2TiF6 flux. Plates of 6 mm thickness were prepared from the castings and successfully butt joined using friction stir welding (FSW). The FSW was carried out using a tool rotational speed of 1000 rpm, welding speed of 80 mm/min and axial force of 10 kN. A tool made of high carbon high chromium steel with square pin profile was used. The microstructure of the welded joint was characterized using optical and scanning electron microscopy. The welded joint showed the presence of four zones typically observed in FSW of aluminum alloys. The weld zone showed fine grains and homogeneous distribution of B4C particles. A joint efficiency of 93.4% was realized under the experimental conditions. But, FSW reduced the ductility of the composite.  相似文献   

4.
The aim of the present work is to optimise the welding parameters for friction stir spot welded non-heat-treatable AA3003-H12 aluminium alloy sheets using a Taguchi orthogonal array. The welding parameters, such as the tool rotational speed, tool plunge depth and dwell time, were determined according to the Taguchi orthogonal table L9 using a randomised approach. The optimum welding parameters for the peak tensile shear load of the joints were predicted, and the individual importance of each parameter on the tensile shear load of the friction stir spot weld was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The optimum levels of the plunge depth, dwell time and tool rotational speed were found to be 4.8 mm, 2 s and 1500 rpm, respectively. The ANOVA results indicated that the tool plunge depth has the higher statistical effect with 69.26% on the tensile shear load, followed by the dwell time and rotational speed. The tensile shear load of the friction stir spot welding (FSSW) joints increased with increasing plunge depth. Additionally, examination of the weld cross-sections, microhardness tests and fracture characterisation of the selected friction spot welded joints were conducted to understand the better performance of the joints. All the fractures of the joints during tensile testing occurred at stir zone (SZ), where the bonded section was minimum. The tensile shear load and tensile deformation of the FSSW joints increased linearly with increasing the bonded size. The finer grain size in the SZ led to the higher hardness, which resulted in higher fracture strength. When the tensile shear load of the joints increased approximately 3-fold, the failure energy absorption of the joints increased approximately 15-fold.  相似文献   

5.
Joints of Al 5186 to mild steel were performed by using friction stir welding (FSW) technique. The effects of various FSW parameters such as tool traverse speed, plunge depth, tilt angle and tool pin geometry on the formation of intermetallic compounds (IMCs), tunnel formation and tensile strength of joints were investigated. At low welding speeds due to the formation of thick IMCs (which was characterized as Al6Fe and Al5Fe2) in the weld zone the tensile strength of joints was very poor. Even at low welding speeds the tunnel defect was formed. As the welding speed increased, the IMCs decreased and the joint exhibited higher tensile strength. The tunnel defect could not be avoided by using cylindrical 4 mm and 3 mm pin diameter. By using a standard threaded M3 tool pin the tunnel was avoided and a bell shape nugget formed. Therefore tensile strength of the joint increased to 90% of aluminum base alloy strength. At higher welding speed and lower tool plunge depth, the joint strength decreased due to lack of bonding between aluminum and steel. Based on the findings, a FSW window has been developed and presented.  相似文献   

6.
This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation. Furthermore, the degree of plastic deformation on the AS was significantly greater than that on the RS, and relatively complete graphite granules and the fine ferrite grains resulting from dynamic recrystallization were observed on the RS.  相似文献   

7.
Friction spot welding (FSpW) was applied to join the 7B04-T74 aluminum alloy successfully, and effects of sleeve plunge depth on weld appearance, microstructures and mechanical properties were investigated in detail. When the sleeve plunge depth was larger than 2 mm, a surface indentation with a depth of 0.2 mm should be applied in order to eliminate the defect of annular groove. The tensile shear properties of the joints were dependent on hook geometry, location of alclad layer, and hardness of stir zone (SZ). With increasing the sleeve plunge depth from 2 to 3.5 mm, the hook height increased, the alclad layer downward migrated further and the hardness of SZ decreased. The optimized FSpW joint was obtained when the sleeve plunge depth was 3 mm, and the corresponding tensile shear failure load was 11921 N. Two different failure modes, i.e. shear fracture mode and tensile-shear mixed fracture mode, were observed in the tensile shear tests.  相似文献   

8.
The main object of the present study is to investigate the effect of nano-sized SiC particle on the mechanical properties of the friction stir welding (FSW) joints. Prior to FSW, nano-sized SiC particles were incorporated into the joint line. A combination of three rotational speeds and three traveling speeds were applied. Microstructural evaluation using optical microscopy (OM) and scanning electron microscopy (SEM) revealed a banded structure consisting of particle-rich and particle-free regions in stir zone (SZ). The joints fabricated with rotational speed of 1250 rpm and traveling speeds of 40 and 50 mm/min, exhibited the highest mechanical properties. Owing to the presence of SiC nano-particles, at 1250 rpm and 40 mm/min, ultimate tensile strength (UTS) and percentage of elongation were improved by 31% and 76.1%, respectively. Significant increase in UTS and percentage of elongation were attributed to the pinning effect and increased nucleation sites associated with SiC nano-particles. Moreover, reinforcement particles resulted in breaking of primary grains. On the other hand, at 1250 rpm and 40 mm/min, SiC-included specimen showed superior ductility to SiC-free specimen. The fracture morphologies were in good agreement with corresponding ductility results.  相似文献   

9.
A semi-solid processed (thixomolded) Mg–9Al–1Zn magnesium alloy (AZ91D) was subjected to friction stir welding (FSW), aiming at evaluating the weldability and fatigue property of the FSW joint. Microstructure analysis showed that a recystallized fine-grained microstructure was generated in the nugget zone (NZ) after FSW. The yield strength, ultimate tensile strength, and elongation of the FSW joint were obtained to be 192 MPa, 245 MPa, and 7.6%, respectively. Low-cycle fatigue tests showed that the FSW joint had a fatigue life fairly close to that of the BM, which could be well described by the Basquin and Coffin-Manson equations. Unlike the extruded magnesium alloys, the hysteresis loops of FSW joint of the thixomolded AZ91D alloy were basically symmetrical, while the non-linear or pseudoelastic behavior was still present. The FSW joint was observed to fail in the BM section rather than in the NZ. Fatigue crack initiated basically from the pores at or near the specimen surface, and crack propagation was mainly characterized by fatigue striations along with the presence of secondary cracks.  相似文献   

10.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

11.
Friction stir welded AA5052-O and AA6061-T6 dissimilar joint has a more obvious impact on microstructure and texture evolution compared to single material welding due to differences in physical and chemical parameters between two aluminum alloys. Microstructure, texture evolution and grain structure of AA5052-O and AA6061-T6 dissimilar joint were investigated by means of OM,EBSD and TEM measurements. Experimental results showed that FS weld was generalized in four regions–nugget zone (NZ),thermomechanically affected zone (TMAZ),heat affected zone (HAZ) and base metals (BM), using standard nomenclatures. NZ exhibited the complex structure of the two materials with flowing shape and mainly composed of the advancing side material Subgrain boundaries in weld nugget zone gradually transformed into high angle grain boundaries by absorbing dislocation and accumulating misorientations. Grain refinement of weld nugget zone was achieved by dynamic recrystallization. In the friction stir welding process, the presence of the shear deformation in weld made {001} < 100 > C cube texture, {123} < 634 > S texture in BM gradually transformed into {111} < 1(−)12(−) > A11 shear texture. HABs distribution were most significant in nugget followed by RS and then by AS. In TMAZ and NZ, numerous precipitates and lots of dislocations were observed.  相似文献   

12.
Bo Li  Yifu Shen 《Materials & Design》2011,32(7):3796-3802
The single-pass friction stir weld of aluminum 2219-T6 with weld-defects was repaired by overlapping friction stir welding technique. However, without any post weld heat treatment process, it was found that the phenomena of abnormal particle-coarsening of Al2Cu had occurred in the overlapping friction stir repair welds. The detecting results of non-destructive X-ray inspection proved that not only one group of repair FSW process parameters could lead to occurrence of the abnormal phenomena. And the abnormally coarsened particles always appeared on the advancing side of repair welds rather than the retreating side where the fracture behaviors occurred after mechanical tensile testing. The size of the biggest particle lying in the dark bands of ‘Onion-rings’ was more than 150 μm. After the related investigation by scanning electron microscope and X-ray energy spectrometer, three types of formation mechanisms were proposed for reasonably explaining the abnormal phenomenon: Aggregation Mechanism, Diffusion Mechanisms I and II. Aggregation Mechanism was according to the motion-laws of stir-pin. Diffusion Mechanisms were based on the classical theories of precipitate growth in metallic systems. The combined action of the three detailed mechanisms contributed to the abnormal coarsening behavior of Al2Cu particles in the friction stir repair weld.  相似文献   

13.
Friction stir welding (FSW) is a solid-state joining process, and the joining temperature is lower than that in the fusion welding process. The effect of alloying elements on the microstructure of dissimilar joints of a Mg–Zn–Zr alloy (ZK60) and titanium by using FSW, was examined. A commercial ZK60 and a titanium plates with 2 mm in thickness was butt-joined by inserting the probe into the ZK60 plate, and slightly offset into the titanium plate side to ensure the direct contact between them. The average tensile strength of the joint was 237 MPa, which was about 69% of that of ZK60 and a fracture occurred mainly in the stir zone of ZK60 and partly at the joint interface. A thin Zn and Zr-rich layer with about 1 m in thickness was formed at the joint interface, which affected the tensile strength of the dissimilar joint of ZK60 and titanium.  相似文献   

14.
6005A-T6 aluminum alloy is welded by stationary shoulder friction stir welding (SSFSW). At a constant rotational velocity of 2000 rpm, the effect of welding speed on mechanical properties of SSFSW joint are investigated in detail. Defect-free joint with gloss surface and small flash is attained and no cracks appear at the bending angle of 180°. Compared with traditional friction stir welding (FSW), width of rotational shoulder affected zone is relatively small because of the smaller diameter of rotational shoulder. Increasing welding speed is benefit for reducing the width of softening region and the softening degree. The fracture position of welding joint locates in thermo-mechanically affected zone and the fracture surface morphology presents the typical ductile fracture. The maximum tensile strength of joint at the welding speed of 400 mm/min reaches 82% of base metal (BM).  相似文献   

15.
5A02 aluminum alloy and pure copper were joined by friction stir welding (FSW). A defect-free joint was obtained when one of process parameters, i.e. the traverse speed was lowered from 40 mm/min to 20 mm/min. A good mixing of Al and Cu was observed in the weld nugget zone (WNZ). A large amount of fine Cu particles were dispersed in the upper part of the WNZ producing a composite-like structure. In the lower part, nano-scaled intercalations were observed and identified by transmission electron microscopy (TEM). These layered structures were subsequently confirmed as Al4Cu9 (γ), Al2Cu3 (ε), Al2Cu (θ), respectively. Formation of these microstructures caused an inhomogeneous hardness profile. Particularly, a distinct rise in hardness was noticed at the Al/Cu interface. Excellent metallurgical bonding between Al and Cu gave rise to good behaviors in the tensile and bending strength.  相似文献   

16.
During the friction stir welding (FSW) of heat-treatable aluminum alloys, the welding thermal cycles tend to cause a local softening in the joints and thus lead to a degradation in joint properties. Underwater FSW has been demonstrated to be available for the strength improvement of normal joints. In order to obtain the optimum welding condition for underwater FSW, a 2219-T6 aluminum alloy was underwater friction stir welded and a mathematical model was developed to optimize the welding parameters for maximum tensile strength in the present study. The results indicate that a maximum tensile strength of 360 MPa can be achieved through underwater FSW, higher than the maximum tensile strength obtained in normal condition.  相似文献   

17.
Al–Li alloys are characterized by a strong anisotropy in mechanical and microstructural properties with respect to the rolling direction. In the present paper, 4 mm sheets of 2198 Al–Li alloy were joined via friction stir welding (FSW) by employing a rotating speed of 1000 mm/min and a welding speed of 80 mm/min in parallel and orthogonal direction with respect to the rolling one. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests were performed by using a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz sinusoidal loading. The fatigue tests were conducted in axial control mode with R = σmin/σmax = 0.33, for all the welding and rotating speeds used in the present study.  相似文献   

18.
A SKD61 tool steel was friction stir processed using a polycrystalline cubic boron nitride tool. Microstructure, tensile properties and wear characteristic were evaluated. Fine grains with a martensite structure were produced in the friction stir processed zone, which led to the increase of the microindentation hardness. The grains became finer when the heat input was lowered. The transverse tensile strength of the friction stir processed zone was equal to that of base metal and all the tensile specimens fractured at base metal zone. The wear width and depth of the friction stir processed zone at the load of 1.96 N were 339 μm and 6 μm, as compared to 888 μm and 42 μm of the base metal, decreased by 62% and 86%. Findings of the present study suggest that low heat input is an effective method to produce a friction stir processed zone composed of relatively fine grain martensitic structure with good tensile properties and wear characteristic.  相似文献   

19.
The 6061-T6 Al alloy and mild steel plate with a thickness of 1 mm were successfully welded by the flat spot friction stir welding technique, which contains two steps during the entire welding process. The rotating tools with different probe lengths of 1.0, 1.3 and 1.5 mm were used in the first step, during which a conventional spot FSW was conducted above a round dent previously made on the back plate. However, sound Al/Fe welds with similar microstructure and mechanical properties can still be obtained after the second step, during which a probe-less rotating tool was used to flatten the weld surface. The sound welds have smooth surface without keyholes and other internal welding defects. No intermetallic compound layer but some areas with amorphous atomic configuration was formed along the Al/Fe joint interface due to the lower heat input. The shear tensile failure load can reach a maximum value of 3607 N and fracture through plug mode. The probe length has little effect on the weld properties, which indicates that the tool life can be significantly extended by this new spot welding technique.  相似文献   

20.
2 mm thick Fe–18.4Cr–15.8Mn–2.1Mo–0.66N high nitrogen austenite stainless steel plate was successfully joined by friction stir welding (FSW) at 800 rpm and 100 mm/min. FSW did not result in the loss of nitrogen in the nugget zone. The arc-shaped band structure, consisting of a small amount of discontinuous ferrite aligning in the bands and fine austenite grains, was a prominent microstructure feature in the nugget zone. The discontinuous ferrite resulted from newly formed ferrite during welding and the remained ferrite, whereas the fine austenite grains were formed due to dynamic recrystallization of the initial austenite during FSW. The fine dynamically recrystallized grains in the nugget zone significantly increased the hardness compared to that of the base material. The strength of the joint was similar to that of the base material, with the joint failing in the base material zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号