首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Magnetoelectric multiferroics are very promising materials because of their practical applications and fundamental interests. The most widely studied magnetoelectric oxides are ABO3 perovskites. In the paper structural properties of BiFeO3 and Pb(Fe0.5Nb0.5)O3 solid solution are described. The material crystallizes in rhombohedral R3c crystal structure which parameters are presented. Mössbauer spectroscopy was used to study local changes in an iron environment due to Fe/Nb substitution and hyperfine interaction parameters of different local surroundings of iron atoms are presented. The random distribution of B-site sublattice cations was confirmed. Ab initio calculations of the studied solid solution were conducted and theoretical crystal structure parameters were compared with the experimental data. The theoretical magnetic and electric properties are discussed. The local iron magnetic moments were estimated and their dependence on the local surrounding changes is shown. The calculated electrons densities and Bader's topological analysis were used to describe chemical bonding properties.  相似文献   

3.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

4.
Coal particles (−0.5 mm) were flocculated with fine magnetite by polyacrylamide-based polymers. The magnetic flocs obtained were retained in a magnetic field and their stability studied under different flow rates of water. Flocs formed by coarser particles were more easily broken. It is postulated that this is due to breakage of polymer bridges between particles.  相似文献   

5.
Lead-free bismuth sodium titanate zirconate (Bi0.5Na0.5Ti1?xZrxO3 or BNTZ) solid solutions with varied composition of x=0.50, 0.55, 0.58, 0.60, 0.63, 0.65, 0.68, 0.70, 0.73, 0.75 and 0.78 mol fraction were obtained using a conventional mixed-oxide method. XRD analysis indicated that the increase in concentration of Zr led to compositions across morphotropic phase boundary region. A quantitative structural investigation was carried out using the X-ray powder diffraction data. The rhombohedral phase was found to dominate for x<0.68 with space group R3c. In the morphotropic phase boundary (MPB) region i.e. 0.68≤x≤0.75, it was demonstrated that coexistence of rhombohedral and orthorhombic phase was observed. For x=0.78, the phase was completely orthorhombic with space group Pmna. Furthermore, the dielectric properties showed some enhanced activity of dipole movement at MPB boundaries which supported the presence of MPB region in this material system.  相似文献   

6.
0.92Na0.5Bi0.5TiO3–0.06BaTiO3–0.02K0.5Na0.5NbO3+x wt% Co2O3 (NBKT–xCo, x=0, 0.2, 0.4, 0.6, 0.8) lead-free ferroelectric ceramics were prepared via a conventional solid state reaction method. Effects of Co2O3 additive on crystallite structure, microstructure, dielectric and ferroelectric properties of the NBKT–xCo ceramics were studied. X-ray diffraction results showed that the rhombohedral–tetragonal morphotropic phase boundary existed in all the ceramics, with relative amount of tetragonal phase varying with the content of Co2O3. Average grain size, maximum value of dielectric constant, Curie temperature and ferroelectric properties of the ceramics were close related to the content of Co2O3. The dielectric anomaly caused by the phase transition between the ferroelectric phase and the so-called “intermediate phase” was observed in the ceramics with x≤0.2, while it disappeared with further increasing x. All the ceramics showed a diffuse phase transition between the “intermediate phase” and the paraelectric phase. The change in the ferroelectric properties with changing the content of Co2O3 was discussed by considering the competitive effects among grain size, relative amount of the tetragonal phase and oxygen vacancies.  相似文献   

7.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

8.
(K0.5Na0.5)1−xLixNb0.95Sb0.05O3 (KNLNS-x, x=0–10 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed-oxide method. The temperature stability of the dielectric, piezoelectric, and ferroelectric properties of the two typical compositions (KNLNS-2 with orthorhombic phase, and KNLNS-7 with mixed phases) was investigated systematically. The relationship between the orthorhombic–tetragonal polymorphic phase transition (PPT) of the ceramics and the temperature stability of their electrical properties was also discussed. The electromechanical coupling factors (kp and k31) of the ceramics show the maximum values near the PPT, where the temperature stability of the resonance frequency is relatively poor. After the occurrence of the PPT, the remnant polarization (Pr) of the ceramics shows a marked decrease, and a maximum peak in the coercive field (Ec) is observed. Related mechanisms for the temperature stability of electrical properties were also discussed.  相似文献   

9.
Phase transformation and electric properties of lead-free piezoceramics (Bi0.5Na0.5)1?xBaxTiO3 with x=0.05, 0.06, and 0.07(BNB5T, BNB6T and BNB7T) were investigated using dielectric, piezoelectric and ferroelectric measurements. Electric field induced strain measurement shows “W” shape bipolar strain characteristics for BNB5T with typical ferroelectric PE curve, while BNB6T and BNB7T, possessing pinch-off PE, exhibit “V” shape field-induced strain. All the BNBxT specimens exhibit relaxor characteristic, identified by the Debye Law. Dielectric properties measured at elevated temperatures with the frequency variation (10–500 kHz) reveal frequency dispersion below the Td point, but no dispersion between Td and Tm, which may be ascribed to an intermediate phase transition. By adding more Ba2+ ions, the region of intermediate phase, distinguished by frequency dependence dielectric constant, expands to lower temperature. Moreover, the ferroelectric properties measured at elevated temperature were carried out below and at the depolarization temperature to well investigate the existence of this phase. Much less εT profile dispersion were observed during the investigation of BNB6T and BNB7T, leading to possible existence of an intermediate phase in the investigated compositions. The results suggest that the linear field-induced-strain of (Bi0.5Na0.5)1?xBaxTiO3 are expected to be attributed to the intermediate phase.  相似文献   

10.
To explore lead-reduced dielectric materials in the SrTiO3–PbTiO3–PbZrO3 ternary system, a novel solid solution between relaxor ferroelectric (Pb0.5Sr0.5)(Zr0.5Ti0.5)O3 and ferroelectric PbTiO3, namely (1 − x)(Pb0.5Sr0.5) (Zr0.5Ti0.5)O3xPbTiO3 (lead–strontium–zirconate–titanate [PSZT]–PT), has been synthesized in the perovskite structure by high-temperature solid-state reaction method in the form of ceramics. The crystal structure and phase symmetry of the materials synthesized were analyzed and resolved based on X-ray powder diffraction (XRD) data through both the Pawley and Rietveld refinements. The results of the structural refinements indicate that at low PT-concentration end of the solid solution system, for example, x = 0.05, the PSZT–PT solid solution exhibits a cubic structural symmetry (with the space group Pm-3m). As the PT concentration (x) increases, the structure of (1 − x)PSZT–xPT gradually transforms from the cubic to a tetragonal (P4mm) phase. In the composition range of x = 0.10–0.25, a mixture of the cubic and tetragonal phases was identified. As the concentration of PT increases, the proportion of the tetragonal phase increases at the expense of the cubic phase. For a composition of x > 0.25, a pure tetragonal phase is observed. The dielectric properties of the materials were studied by measuring the permittivity as a function of temperature at various frequencies. For the composition of x = 0.05, the temperature dependence of dielectric constant shows typical relaxor behavior. For x = 0.35, the dielectric peaks indicate a normal ferroelectric phase transition. Overall, a structural transformation from a central-symmetric, nonpolar cubic phase to a non-centrosymmetric, polar tetragonal phase is induced by the substitution of PT for PSZT in the pseudo-binary solid solution of (1 − x)PSZT–xPT, which also reveals an interesting relaxor to ferroelectric crossover phenomenon.  相似文献   

11.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

12.
New high temperature negative temperature coefficient (NTC) thermistor ceramics based on a xMgAl2O4–(1  x)YCr0.5Mn0.5O3 (x = 0.1, 0.4, 0.6) composite system have been successfully fabricated through spark plasma sintering (SPS) with a low sintering temperature and a short sintering period. The X-ray diffraction analysis indicates that the SPS-sintered composite ceramics consist of a cubic spinel MgAl2O4 phase and an orthorhombic perovskite YCr0.5Mn0.5O3 phase isomorphic to YCrO3. The SPS-sintered composite ceramics have high relative density ranging from 94.1 to 97.4% of the theoretical density. X-ray photoelectron spectroscopy analysis corroborates the presence of Cr3+, Cr4+, Mn3+, and Mn4+ ions on lattice sites, which may result in the hopping conduction. The obtained ρ25, B25–150, and B700–1000 of the SPS-sintered composite NTC thermistors are in the range of 1.53 × 106–9.92 × 109 Ω cm, 3380–5172 K, and 7239–9543 K, respectively. These values can be tuned by adjusting the MgAl2O4 concentration.  相似文献   

13.
This study elucidates the microwave dielectric properties and microstructures of Nd(Mg0.5Sn0.5?xTix)O3 ceramics with a view to their potential for microwave devices. The Nd(Mg0.5Sn0.5?xTix)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics revealed no significant variation of phase with sintering temperatures. A dielectric constant (?r) of 21.1, a quality factor (Q × f) of 50,000 GHz, and a temperature coefficient of resonant frequency (τf) of ?60 ppm/°C were obtained for Nd(Mg0.5Sn0.4Ti0.1)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

14.
Polyaniline (PANI)/cobalt-manganese ferrite, PANI/Co0.5Mn0.5Fe2O4, nanocomposite was synthesized by oxidative chemical polymerization of aniline in the presence of ammonium peroxydisulfate. Microwave assisted synthesis method was used for the fabrication of core Co0.5Mn0.5Fe2O4 nanoparticles. The presence of PANI on the surface of the Co0.5Mn0.5Fe2O4 NPs was confirmed by infrared spectroscopy and thermal gravimetric analysis. The crystallite size was calculated with line profile fitting method as 20 ± 9 nm. The spherical morphology of the product was presented by Scanning electron microscopy and transmission electron microscopy. The electrical characterizations showed that ac conductivity is found to be independent of frequency and increases with increase of temperatures. However, imaginary component of dielectric function obey the power law of frequency while it is almost independent of temperature. This can be attributed to the molecular interatomic interaction between Co0.5Mn0.5Fe2O4 nanoballs and PANI shells.  相似文献   

15.
《Ceramics International》2015,41(7):8931-8935
The densification, microstructural evolution and microwave dielectric properties of (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics with x=0, 0.25, 0.5 and 0.75 are investigated in this study. The sintering temperature of the (Ba1−xSrx)(Mg0.5W0.5)O3 is significantly reduced from 1575 °C to 1400 °C as the x value increases from 0 to 0.25 and 0.50; this result is accompanied by the formation of the (Ba1−ySry)WO4 phase and a small quantity of second phase surrounding the grains. The grain size of the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics is increased by raising the Sr2+ content, which significantly lowers the sintering temperature. The microstructure of the (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic displays the smallest average grain size of approximately 0.8 μm, with a narrow grain size distribution. Without long annealing time, very high Q×f values are obtained for the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics sintered at 1400–1575 °C for a duration of only 2 h. The (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic sintered at 1400 °C results in the best microwave dielectric properties, including εr of 20.6, Q×f of 152,600 GHz and τf of +24.0 ppm/°C.  相似文献   

16.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

17.
利用固相法制备了K_(0.5)Na_(0.5)NbO_3(KNN)–x BiMg_(0.5)Ti_(0.5)O_3电介质陶瓷,研究了BiMg_(0.5)Ti_(0.5)O_3对KNN基陶瓷储能性质的影响。结果表明,当x0.1时,BiMg_(0.5)Ti_(0.5)O_3可完全固溶进入晶格,并且随着掺杂量的增加,晶体结构逐步由正交相变成厭立方相,晶粒尺寸降低,致密度提高,因此陶瓷的储能密度和储能效率逐步增加,在x=0.1时,获得最佳储能性能:击穿场强约195 kV/cm,储能密度约1.25 J/cm~3,储能效率约85.3%。  相似文献   

18.
La0.5Sr0.5Co1-xNixO3-δ (x = 0, 0.1, 0.3, 0.5) ceramics were prepared via tape casting and solid state reaction process. The influence of Ni concentration on the optical properties of La0.5Sr0.5Co1-xNixO3-δ has been investigated. Results showed that the reflectance in the range of 0.3–15 μm decreased with the increment of Ni concentration, thereby causing a change in the color phase parameters and emissivity. Based on the difference in L* values and emissivity, the letters (HOT) and QR codes (NJTECH) were fabricated. The developed letters and QR codes could be identified both at room and high temperatures. Furthermore, the QR codes were read out successfully even underwent heat treatment at 1000 °C. The results in this work demonstrate a new application of La0.5Sr0.5Co1-xNixO3-δ ceramics.  相似文献   

19.
(1−x)La(Mg0.5Ti0.5)O3 (LMT)–xCaTiO3 (CT) [0<x<1] ceramics were prepared from powder obtained by a nonconventional chemical route based on the Pechini method. The crystal structure of the microwave dielectric ceramics has been refined by Rietveld method using X-ray powder diffraction data. LMT and CT were found to form a solid solution over the whole compositional range. The 0.9LMT–0.1CT composition was refined using P21/n space group, which allows taking into account B-site ordering. The compounds having x⩾0.3 were found to be disordered and were refined using Pbnm space group. Microstructure evolution was also analysed. Dielectric characterization at microwave frequencies was performed on the LMT–CT ceramics. The permittivity and the temperature coefficient of resonant frequency of the solid solutions showed a non-linear variation with composition. The quality factor demonstrates a considerable decrease with the increase of CT content.  相似文献   

20.
The effect of Ni substitution on the thermal behavior, crystal structure, densification, and electrical properties of La0.5Sr0.5Co1–yNiyO3-δ (y = 0.00–0.08) (LSCN) ceramics was discussed based on experimental measurements and theoretical calculations to search for a ruthenium–free and lead–free conductive oxide for thick film resistors. Ceramics were synthesized by the solid–state reaction, and calculations were performed with first–principle density functional theory (DFT). Results showed that the replacement of Ni ion to Co ion could help decrease the densification temperature and enhance the densification level and improve the conductivity of LSCN. Theoretical calculations, including the crystal structure, bond population, total energy, and density of states (DOS), supported the experimental results well. The maximum conductivity of 3155 S/cm was achieved as y = 0.04 was sintered at 1200 °C, and the peak temperature coefficient of resistance (TCR) of 2405.7 ppm/°C occurred at y = 0.06.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号