首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to enhance the production of hydrogen, a new system based on a ZnxTiyS photocatalyst is investigated. ZnxTiyS (x = 1, 0.95, 0.9, 0.85, 0.8 mol and y = 0, 0.05, 0.1, 0.15, 0.2 mol, respectively) is prepared using thiourea (H2NCSNH2). The formed ZnxTiyS particles are globular, ~6 μm in diameter, and composed of small spherical particles about 600 nm in diameter. The ZnxTiyS particles absorb at wavelengths above 380 nm in the UV-region like TiO2. The evolution of H2 by methanol/water (1:1) photo-splitting over ZnxTiyS in a methanol/water system is dramatically enhanced versus pure ZnS. In particular, 4.0 mmol of H2 gas is produced in 10 h when 1.0 g of Zn0.9Ti0.1S was used, and its performance increases in KOH solutions. Based on cyclic voltammetry (CV) and UV–vis spectroscopy measurements, the high photo-activity of Zn0.9Ti0.1S is attributed to the existence of a band-gap that includes the redox potential of water.  相似文献   

2.
Perovskites La1−xCaxAlyFe1−yO3−δ (x, y = 0 to 1) were prepared by high-temperature solid-state synthesis based on mixtures of oxides produced by colloidal milling. The XRD analysis showed that perovskites La0.5Ca0.5AlyFe1−yO3−δ with a high Fe content (1  y = 0.8–1.0) were of orthorhombic structure, perovskites with a medium Fe content (1  y = 0.8–0.5) were of rhombohedral structure, and perovskite with the lowest Fe content (1  y = 0.2) were of cubic structure. Thermally programmed desorption (TPD) of oxygen revealed that chemical desorption of oxygen in the temperature range from 200 to 1000 °C had proceeded in the two desorption peaks. The low-temperature α-peak (in the 200–550 °C temperature range) was brought about by oxygen liberated from oxygen vacancies; the high-temperature β-peak (in the 550–1000 °C temperature range) corresponded to the reduction of Fe4+ to Fe3+. The chemidesorption oxygen capacity increased with increasing Ca content and decreased with increasing Al content in the perovskites. The Al3+ ions restricted, probably for kinetic reasons, the reduction of Fe4+ and the high-temperature oxygen desorption associated with it.  相似文献   

3.
《Ceramics International》2015,41(7):8931-8935
The densification, microstructural evolution and microwave dielectric properties of (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics with x=0, 0.25, 0.5 and 0.75 are investigated in this study. The sintering temperature of the (Ba1−xSrx)(Mg0.5W0.5)O3 is significantly reduced from 1575 °C to 1400 °C as the x value increases from 0 to 0.25 and 0.50; this result is accompanied by the formation of the (Ba1−ySry)WO4 phase and a small quantity of second phase surrounding the grains. The grain size of the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics is increased by raising the Sr2+ content, which significantly lowers the sintering temperature. The microstructure of the (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic displays the smallest average grain size of approximately 0.8 μm, with a narrow grain size distribution. Without long annealing time, very high Q×f values are obtained for the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics sintered at 1400–1575 °C for a duration of only 2 h. The (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic sintered at 1400 °C results in the best microwave dielectric properties, including εr of 20.6, Q×f of 152,600 GHz and τf of +24.0 ppm/°C.  相似文献   

4.
The oxygen permeability of mixed-conducting Sr1−xCaxFe1−yAlyO3−δ (x=0–1.0; y=0.3–0.5) ceramics at 850–1000 °C, with an apparent activation energy of 120–206 kJ/mol, is mainly limited by the bulk ionic conduction. When the membrane thickness is 1.0 mm, the oxygen permeation fluxes under pO2 gradient of 0.21/0.021 atm vary from 3.7×10−10 mol s−1 cm−2 to 1.5×10−7 mol s−1 cm−2 at 950 °C. The maximum solubility of Al3+ cations in the perovskite lattice of SrFe1−yAlyO3−δ is approximately 40%, whilst the brownmillerite-type solid solution formation range in Sr1−xCaxFe0.5Al0.5O3−δ system corresponds to x>0.75. The oxygen ionic conductivity of SrFeO3-based perovskites decreases moderately on Al doping, but is 100–300 times higher than that of brownmillerites derived from CaFe0.5Al0.5O2.5+δ. Temperature-activated character and relatively low values of hole mobility in SrFe0.7Al0.3O3−δ, estimated from the total conductivity and Seebeck coefficient data, suggest a small-polaron mechanism of p-type electronic conduction under oxidising conditions. Reducing oxygen partial pressure results in increasing ionic conductivity and in the transition from dominant p- to n-type electronic transport, followed by decomposition. The low-pO2 stability limits of Sr1−xCaxFe1−yAlyO3−δ seem essentially independent of composition, varying between that of LaFeO3−δ and the Fe/Fe1−γO boundary. Thermal expansion coefficients of Sr1−xCaxFe1−yAlyO3−δ ceramics in air are 9×10−6 K−1 to 16×10−6 K−1 at 100–650 °C and 12×10−6 K−1 to 24×10−6 K−1 at 650–950 °C. Doping of SrFe1−yAlyO3−δ with aluminum decreases thermal expansion due to decreasing oxygen nonstoichiometry variations.  相似文献   

5.
Tubular membranes of La0.6Ca0.4Fe0.75Co0.25O3−δ and La0.5Sr0.5Fe1−yTiyO3−δ (y = 0, 0.2) for the application of partial oxidation of methane to syngas were produced by thermoplastic extrusion and investigated by oxygen permeation measurements. The optimum ceramic content in the feedstock for extrusion was found to be 51 vol% as a result of rheology measurements. Tubes with an outer diameter of 4.8–5.5 mm and thickness of 0.25–0.47 mm were produced with densities higher than 95% of the theoretical density. The oxygen permeation flux of the tubular membranes was measured with air on one side and Ar or Ar + CH4 mixture on the other side. The oxygen permeation rate decreased with Ti-substitution while it was considerably increased by introduction of 5% methane into the system. The normalized oxygen fluxes in air/Ar gradient at 900 °C were measured to be 0.06, 0.051, and 0.012 μmol cm−2 s−1 for LCFC, LSF, and LSFT2, respectively, and 0.18 μmol cm−2 s−1 for LSFT2 with 5% methane.  相似文献   

6.
The polycrystalline samples of (1 ? x)BiFeO3xBa0.8Sr0.2TiO3 (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4 and x = 1) were prepared by the conventional solid state reaction method. The effect of substitution in BiFeO3 by Ba0.8Sr0.2TiO3 on the structural, dielectric and magnetic properties was investigated. X-ray diffraction study showed that these compounds crystallized at room temperature in the rhombohedral distorted perovskite structure for x  0.3 and in cubic one for x = 0.4. As Ba0.8Sr0.2TiO3 content increases, the dielectric permittivity increases. This work suggests also that the Ba0.8Sr0.2TiO3 substitution can enhance the magnetic response at room temperature. A remanent magnetization Mr and a coercive magnetic field HC of about 0.971 emu/g and 2.616 kOe, respectively were obtained in specimen with composition x = 0.1 at room temperature.  相似文献   

7.
In this work, a continuous hydrothermal synthesis method in supercritical water was applied to environmentally benign production of Ca1−xSrxTiO3 (x = 0.0–1.0) solid-solution nanoparticles as key materials in conducting, electric, magnetic, and photocatalytic fields. A T-type micromixer (330 μm id) was introduced for rapid heating of stating solutions of Ca(NO3)2, Sr(NO3)2, and TiO2 sol using turbulent flow mixing with preheated NaOH aqueous solution and also for exact control of reaction temperature. At 673 K and 30 MPa for 5.0 s mean residence time, Ca1−xSrxTiO3 solid-solution nanoparticles having crystallite diameters of around 20 nm with monomodal diameter distributions were obtained without byproducts and production of CaTiO3 and SrTiO3 separately over the whole composition range. Effects of NaOH molality, Ca and Sr compositions in the starting solutions, and mean residence time on the reaction were examined. The results showed that TiO2 sol dissolution and Ca1−xSrxTiO3 precipitation were almost finished within 0.25 s mean residence time, and after that Ostwald ripening proceeded.  相似文献   

8.
《Ceramics International》2016,42(13):14355-14363
We investigated (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 (x=0, 0.14, 0.16, 0.18, 0.20, and 0.22) compositions of lead-free piezoelectric ceramics for potential energy harvester applications. Composition and sintering temperature of (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 were varied to extract the optimized processing temperature with each composition. We compared and analyzed sintering temperature-dependent surface morphologies and electrical properties. Maximum piezoelectric charge constant of 180 pC/N were obtained from the 0.8(Bi,Na)TiO3–0.2(Bi,K)TiO3composition at the sintering temperature of 1180 °C. Temperature dependent dielectric permittivity was measured to know the phase transition. We corresponded two different anomaly peaks, observed at 84 and 290 °C, as the rhombohedral-tetragonal and tetragonal-cubic phase transitions, respectively. Due to these phase transitions, different shapes of polarization-electric field loops (P-E loops) were measured and compared. Finally, output power of 42.39 nW/cm2 were obtained for the (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 lead free piezoelectric ceramics.  相似文献   

9.
0.87(Mg0.7Zn0.3)TiO3–0.13(Ca0.61La0.26)TiO3 (referred to as 87MZCLT) ceramics were prepared by microwave sintering and conventional sintering. The experimental results demonstrated that the sintering cycle of 87MZCLT ceramics was greatly shortened and the impurity phase (Mg0.7Zn0.3)Ti2O5 was eliminated by microwave sintering. Moreover, the 87MZCLT ceramics prepared by microwave sintering show more uniform, fine-grained microstructure as well as much less Zn evaporation. As a result, the quality factor was increased by 40% compared with conventional sintering. All samples were sintered at 1275 °C for 20 min with heating and cooling rate of 15 °C/min and gave excellent microwave dielectric properties: ?r = 26.21, Q × f = 120,000 GHz, τf = ?3 ppm/°C.  相似文献   

10.
The LiMg(1?x)ZnxPO4 ceramics have been prepared by the solid state ceramic route. The LiMg(1?x)ZnxPO4 ceramic retains the orthorhombic structure up to x = 0.2. The compositions with 0.3  x  0.8 exist as a mixture of orthorhombic and monoclinic phases. When Mg2+ is fully replaced with Zn2+ (x = 1.0) complete transition to monoclinic phase occurs. The ceramic with x = 0.1 (LiMg0.9Zn0.1PO4) sintered at 925 °C exhibits low relative permittivity (?r) of 6.7, high quality factor (Qu × f) of 99,700 GHz with a temperature coefficient of resonant frequency (τf) of ?62 ppm/°C. The slightly large τf is adjusted nearly to zero with the addition of TiO2. LiMg0.9Zn0.1PO4–TiO2 composite with 0.12 volume fraction TiO2 sintered at 950 °C shows good microwave dielectric properties: ?r = 10.1, Qu × f = 52,900 GHz and τf = ?5 ppm/°C. The ceramic is found to be chemically compatible with silver.  相似文献   

11.
Combustive oxidation of volatile organic compounds (VOCs), such as propyl alcohol, toluene and cyclohexane, were studied. The combustion was catalyzed by nanoparticles of La1−xSrxCoO3 (x = 0, 0.2) perovskites prepared by a co-precipitation method. The results showed high activities of the perovskite catalysts. Compared to LaCoO3, in particular, La0.8Sr0.2CoO3 was much higher in catalytic ability. The total oxidation of VOCs followed the increasing order: cyclohexane < toluene < propyl alcohol. The T99% of cyclohexane was 40 °C lower than that of toluene, which appeared to be determined by the bond strengths of the weakest C–H and C–C bonds. The 100-h stability experiments showed that La1−xSrxCoO3 (x = 0, 0.2) perovskite was highly stable.  相似文献   

12.
The as-sintered Zn1−xAlxO (0  x  0.05) samples crystallized in the ZnO with a wurtzite structure, along with a small amount of the cubic spinel ZnAl2O4. The addition of Al2O3 to ZnO gave rise to a decrease in grain size, ranging from 7.3 to 2.7 μm and in relative density, ranging from 99.2 to 90.1% of the theoretical density. In the Zn0.97Al0.03−yTiyO samples, as the amount of TiO2 increased, the grain size of ZnO grains and second phases, such as Zn2TiO4 and ZnAl2O4, as well as density increased. The co-doping of Al and Ti led to a significant increase in both the electrical conductivity and the absolute value of the Seebeck coefficient, resulting in an increase in the power factor. The highest value of power factor (3.8 × 10−4 W m−1 K−2) was attained for Zn0.97Al0.02Ti0.01O at 800 °C. It is demonstrated that the Al and Ti co-doping is fairly effective for enhancing thermoelectric properties.  相似文献   

13.
TiO2 is an insulator, but using specific dopants, can modify sharply its electronic structure towards semiconducting behavior. This type of response is widely applied in many electrochemical and electrocatalytical devices, namely chlorine production, hydrocarbon oxidation, CO and CO2 hydrogenation and as electroactive substrata for biological cell growth.Combustion synthesis is a very simple, rapid and clean method for material preparation, which will be used in the preparation of the (1  x)TiO2xSnO2, x = 0.05–0.3. Tin oxalate and titanium isopropoxide are used as precursors for the synthesis. The as-prepared powders are fine and homogeneous, the average particle size is in the range of 5–10 nm, powders and ceramic compact bodies are characterized by DRX, SEM–TEM–EDX, DTA–TG and EIS. The impedance spectroscopy of the sample 10 mol% of SnO2 indicates the presence of several phases which promote a matrix composite based in an electrical TiO2 insulator compatible with an electronic conducting phase tin rich. This could be attributed to the spinodal decomposition effect observed in TiO2–SnO2 system.  相似文献   

14.
《Ceramics International》2016,42(14):15585-15591
(x)Ni0.4Zn0.6Fe2O4+(1−x)Ba0.6Sr0.4TiO3 composite ceramics with x=0.6, 0.7, 0.8, 0.9 and 1 were synthesized by solid state reaction method. The high dense composites have only two phases, i.e., Ni0.4Zn0.6Fe2O4 and Ba0.6Sr0.4TiO3. The permittivity ε′ of the composites decreases slightly with the frequency increasing from 3 MHz to 1 GHz. The permittivity ε′′ of the composites also shows a little increase with frequency in the 3 MHz–1 GHz range. The permeability displays a relaxation resonance within the 3 MHz–1 GHz frequency range. The permeability μ′ increases while the cut-off frequency decreases with the Ni0.4Zn0.6Fe2O4 concentration, obeying the Snoek's law μifr=constant. The permittivity ε′ of the composites decreases with Ni0.4Zn0.6Fe2O4 concentration. The composites have a relatively higher ε′ than the pure Ni0.4Zn0.6Fe2O4 at 1–10 GHz. In the frequency range of 1–10 GHz, the magnetic permeability μ′ reaches its maximum and μ′′ shows a minimum for the composite with x=0.6 in all ceramics. The permeability μ′ of the composites decreases with dc magnetic field at 1–10 GHz. The permeability shows a domain wall resonance, and the resonance frequency shifts to high frequency with the dc magnetic field. The permittivity was also influenced by the dc magnetic field due to a magnetodielectric effect.  相似文献   

15.
BaxSr1−xCo0.8Fe0.2O3−δ (0.3  x  0.7) composite oxides were prepared and characterized. The crystal structure, thermal expansion and electrical conductivity were studied by X-ray diffraction, dilatometer and four-point DC, respectively. For x  0.6 compositions, cubic perovskite structure was obtained and the lattice constant increased with increasing Ba content. Large amount of lattice oxygen was lost below 550 °C, which had significant effects on thermal and electrical properties. All the dilatometric curves had an inflection at about 350–500 °C, and thermal expansion coefficients were very high between 50 and 1000 °C with the value larger than 20 × 10−6 °C−1. The conductivity were larger than 30 S cm−1 above 500 °C except for x > 0.5 compositions. Furthermore, conductivity relaxation behaviors were also investigated at temperature 400–550 °C. Generally, Ba0.4Sr0.6Co0.8Fe0‘2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ are potential cathode materials.  相似文献   

16.
A rapid synthesis method is introduced for the synthesis of low thermal expansion materials of Ca1?xSrxZr4P6O24 (x = 0, 0.5 and 1) and optimum synthesizing conditions are obtained. It is shown that these materials can be synthesized by one-step sintering by putting the preheated mixture of CaCO3, SrCO3 and NH4H2PO4 directly into a pipe furnace at the sintering temperature (1673–1873 K). With this method, the sintering procedure is much simplified and sintering time and energy exhausts are considerably reduced with respect to the conventional solid state reactions which usually require multiple-step and longer time sintering at different temperatures with intermediate grindings for the synthesis of these materials. By putting the samples directly at the sintering temperature, the formation of the secondary phase ZrP2O7 can be largely avoided. This insures the rapid synthesis of Ca1?xSrxZr4P6O24. MgO is introduced to increase the density of Ca0.5Sr0.5Zr4P6O24 ceramics. A sintered density of 3.10 g cm?3, relative density of 96.2% for Ca0.5Sr0.5Zr4P6O24 is obtained with 1.0 wt.% MgO. The coefficients of thermal expansion are about 0.27 × 10?6 K?1. Raman spectroscopic and differential scanning calorimetry (DSC) analyses reveal that there are no phase transitions of all the samples from 113 K to 1423 K.  相似文献   

17.
Structure, microstructure and dielectric properties of ZnTiO3 and rutile TiO2 mixtures (ZnTiO3 + xTiO2 with x = 0, 0.02, 0.05, 0.1, 0.15 and 0.2) sintered using ZnO–B2O3 glass phase (5 wt.% added) as sintering aid have been investigated. For all compounds, the sintering temperature achieves 900 °C. The X-ray diffraction patterns indicate for x = 0.1 that the material is composed by three phases identified as ZnTiO3 hexagonal, TiO2 rutile and ZnO. The presence of ZnO is explained by the introduction of Ti into Zn site to form the (Zn1−xTix)TiO3+x solid solution in resulting the departure of ZnO from the ZnTiO3 structure. The ZnTiO3 + 0.15TiO2 composition sintered at 900 °C with glass addition exhibits attractive dielectrics properties (ɛr = 23, tan(δ) < 10−3 and a temperature coefficient of the dielectric constant near zero (τɛ = 0 ppm/°C)) at 1 MHz. It is also shown that the introduction of TiO2 allows to tune the temperature coefficient of the permittivity. All these properties lead this system compatible to manufacture silver based electrodes multilayer dielectrics devices.  相似文献   

18.
《Ceramics International》2016,42(9):11239-11247
In this study, Cu and Mo ions were doped in Ca3Co4O9−δ to improve the electrical conductivity and electrochemical behavior of Ca3Co4O9−δ ceramic and the performance of a solid oxide fuel cell (SOFC) single cell based on NiO-SDC/SDC/doped Ca3Co4O9−δ-SDC were examined. Cu substitution in the monoclinic Ca3Co4O9−δ ceramic effectively enhanced the densification, slightly increased the grain size, and triggered the formation of some Ca3Co2O6; however, no second phase was found in porous Mo-doped Ca3Co4O9−δ ceramics even when the sintering temperature reached 1050 °C. Substitution of Cu ions caused slight increase in the Co3+ and Co4+ contents and decrease in the Co2+ content; however, doping with Mo ions showed the opposite trend. Doping the Ca3Co4O9−δ ceramic with a small amount of Cu or Mo increased its electrical conductivity. The maximum electrical conductivity measured was 218.8 S cm−1 for the Ca3Co3.9Cu0.1O9−δ ceramic at 800 °C. The Ca3Co3.9Cu0.1O9−δ ceramic with a coefficient of thermal expansion coefficient of 12.1×10−6 K−1 was chosen as the cathode to build SOFC single cells consisting of a 20 μm SDC electrolyte layer. Without optimizing the microstructure of the cathode or hermetically sealing the cell against the gas, a power density of 0.367 Wcm−2 at 750 °C was achieved, demonstrating that Cu-doped Ca3Co4O9−δ can be used as a potential cathode material for IT-SOFCs.  相似文献   

19.
《Ceramics International》2017,43(2):2083-2088
The magnetic properties and magnetocaloric effect of Eu1−xSrxTiO3 (x=0–0.1) compounds are investigated. With slight Sr-doping, the ferromagnetic (FM) coupling significantly increased and FM exchange is dominant in the delicate balance. A giant reversible magnetocaloric effect (MCE) and large refrigerant capacity (RC) for Eu1−xSrxTiO3 compounds were observed. The values of −ΔSMmax are evaluated to be around 10 J/kg K under a magnetic field change of 1 T and 21 J/kg K under a magnetic field change of 2 T, respectively. But, the values of RC are increased with the more Eu in EuTiO3 to be substituted by Sr. Therefore, the giant reversible MCE and large RC make the Eu1−xSrxTiO3 compound a good candidate for magnetic refrigerant working at low-temperature and low-field.  相似文献   

20.
The solid solutions in the systems of Ca-Cd HAp [Ca10−xCdxHAp (x = 0–10)], Ca-Sr HAp [Ca10−xSrxHAp (x = 0–10)] and Ca-Pb HAp [Ca10−xPbxHAp (x = 0–10)], were successfully synthesized at 200 °C for 12 h under hydrothermal conditions. The site of the metal ions in the solid solutions was analyzed by the Rietveld method. The results of the Rietveld analysis indicated that the metal ions of Pb2+, Sr2+, and Cd2+ all preferentially occupied M (2) sites in the apatite structure. The preferential occupancy of the metal ions in M (2) sites were explained mainly by their ionic radius and electronegativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号