共查询到20条相似文献,搜索用时 48 毫秒
1.
Titanium nitride ultrafine powders were prepared from tetrabutyl titanate and sucrose by sol–gel and microwave carbothermal reduction methods. The influences of reaction temperature, molar ratio of Ti to C, addition of crystal seeds and amount of NH4F on the synthesis of titanium nitride were studied. The results show that excess amount of carbon, addition of crystal seeds and NH4F plays a positive effect on the preparation of TiN at low temperature. The inceptive formation temperature of TiN ultrafine powders is about 800 °C, and pure TiN can be prepared at 1000 °C. Field emission-scanning electron microscopy (FE-SEM) was used to get the micrograph of the TiN powder, it shows that the size of the powders synthesized at 1000 °C is about 0.1–0.5 μm. 相似文献
2.
ABSTRACTHexagonal-shaped 3C-SiC nanowires were grafted onto SiC nanoribbons by a sol–gel technique using ferrocene as catalyst. The nanowire diameter (~200?nm) and the nanoribbon width–thickness ratio (20:1) are uniform along their entire length. Their length is about several tens to several hundreds of micrometres. Meanwhile, single SiC nanostructure (nanowire or nanoribbon) was obtained by adjusting temperature field. A novel cooperative growth mechanism of vapour–liquid–solid and vapour–solid was proposed for the self-assembled SiC nanostructure. The self-assembled SiC nanowires and nanoribbons exhibit two strong broad photoluminescence peaks at wavelengths of about 373 and 471?nm, which are significantly shifted to the blue compared with the reported luminescence of SiC nanowires. This study will pave a way for the controllable synthesis of SiC nanowires and nanoribbons, and provide a simple method to connect them together firmly as potential applications for nanodevices in future. 相似文献
3.
《Journal of the European Ceramic Society》2000,20(7):933-938
Experimental results demonstrate that TiC1−XNX ultrafine powders can be synthesized by the sol–gel process. The factors influencing the powder synthesizing process, such as temperature, C/Ti ratio in raw materials, holding time and flow rate of nitrogen gas, are discussed. TiC0.5N0.5 powders with particle sizes less than 100 nm were produced at 1550°C. The microhardness of hot-pressed TiC0.5N0.5 samples at 1750°C was 19.6 GPa and the relative density was 98.9%. 相似文献
4.
《Ceramics International》2016,42(6):6587-6594
Ultrafine alumina powders were synthesized through acrylamide (AM), starch and glutaric dialdehyde mediated aqueous sol–gel process, respectively. Sol and gel formed gradually during drying of the solution due to polymerization reaction between functional groups. The used AM, starch and glutaric dialdehyde could be applied to form perfect matrix for the entrapment of metal ions, giving rise to ultrafine crystalline alumina particles during heating treatment. Al2O3 nanoparticles with γ crystalline phase were obtained via heating treatment of the dried precursor in air. Then the γ phase transforms to α phase and pure α-Al2O3 powders could be obtained when the heating temperature was 1473 K. Our results provide a new way of aqueous sol–gel process. 相似文献
5.
《Ceramics International》2016,42(9):11177-11183
Dy2Ti2O7 ultrafine powders ranging from 100 to 300 nm were successfully synthesized by sol–gel method. Particularly, the dried gel precursor was treated at different temperatures (700–1000 °C) via microwave-heating, which contributed to decreasing the grain size and reaction time. The phase composition and structural evolution of the final products were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the resultant powders were selected to fabricate ceramics and rubber based absobers. Their sinterability, mechanical properties and neutron absorption ability were also studied. Results showed that the highest flexural strength of 99.0 MPa were obtained for Dy2Ti2O7 samples when sintered at 1600 °C for 2 h in air atmosphere. Meanwhile, the neutron absorption rate of Dy2Ti2O7 ceramics and rubber based absorbers could reach 97.39% and 80.00% respectively when the thickness of samples was set as 5.0 mm. 相似文献
6.
7.
Ternary composites composed of ZrB2, SiC, and Al2O3 with a broad composition range were produced by PTFE-activated combustion synthesis involving aluminothermic reduction of ZrSiO4, SiO2, and ZrO2. Two solid-state combustion systems were investigated: one comprised ZrSiO4, SiO2, Al, B4C, and C and the other consisted of ZrSiO4, ZrO2, Al, B4C, and B powders. It was required for the powder compacts to adopt 3 wt% PTFE as the reaction promoter to initiate and sustain their combustion reaction. The influence of the gas-phase diffusion transport induced by PTFE on the SHS process was confirmed and the activation mechanisms were proposed. With the assistance of PTFE, self-sustaining combustion was established with a distinct combustion wave characterized by a reaction temperature of 1210–1380 °C and a propagation velocity of 2.27–3.16 mm/s. Based on the XRD analysis, the products were ZrB2–SiC–Al2O3 composites with traces of Si, ZrO2, or ZrC. The synthesized products exhibited a granular morphology. The particle size of the composite powders was in the range of 1–2 μm. 相似文献
8.
《Journal of the European Ceramic Society》2000,20(11):1853-1857
A two-step sol–gel processing was developed to synthesize phenolic resin–SiO2 hybrid gels as SiC precursors, with tetraethoxysilane (TEOS) and novolac phenolic resin being the starting materials, and oxalic acid (OA) and hexamethylenetetramine (HMTA) being the catalysts. At the first step TEOS was prehydrolyzed under the catalysis of OA. At the second step HMTA was added to facilitate gelation. The influences of the molar ratio of OA/TEOS and prehydrolysis time on the sol–gel reaction were investigated. There existed an optimum OA/TEOS ratio where prehydrolysis time needed to form transparent gels was the shortest. The increase of temperature could accelerate sol–gel reaction. The dried hybrid gels were yellowish transparent glassy solids, with uniform microstructure composed of nanometer-sized particles. The conversion of the gels to silicon carbide powders was complete when heated at 1650°C for 30 min in vacuum. The oxygen and free carbon were 0.43 and 0.50 wt%, respectively, in the powder produced from the gel prepared with starting resin/TEOS being 0.143 g/ml. 相似文献
9.
Jianguang Xu Yu Zhang Jinshun Qi Yu Wang Juhua Luo Wei Yao 《Ceramics International》2018,44(8):9494-9498
Herein nanocrystalline MoSi2 with enhanced lithium storage was successfully synthesized via a sol-gel and carbonthermal reduction method. Reduction of the gel mixture of Mo precursor and Si precursor by carbon at a desired temperature resulted in the formation of MoSi2 nanoparticles. The gel mixture was obtained through the hydrolysis of TEOS and ammonium molybdate and the polymerization of hydrolysis products of TEOS. The reducing agent carbon was produced via decarburition of sucrose's hydrolysis products, which have been wrapped in the gel during its formation process. Addition of HCl to the mixed solution controlled the hydrolysis and polymerization rate, and enabled the formation of a gel mixture with homogeneously distributed hydrolysis products of ammonium molybdate, TEOS and sucrose. This achievement likely generates a novel route to synthesize non-oxide compounds such as silicide, carbide through the sol–gel and carbonthermal reduction process. In addition, the as-received MoSi2 nanoparticles showed considerable activities in the reversible lithiation and delithiation process. When using as an anode for Li-ion batteries, MoSi2 nanoparticles delivered a specific capacity of 325 mAh g?1 at C/12 and showed an increasing capacity with cycling. 相似文献
10.
Xiujuan Wan Guangfan Tan Liang Cai Yingchun Zhang 《International Journal of Applied Ceramic Technology》2023,20(5):2760-2771
Li2TiO3 is considered as one of the best candidates for breeding materials. This article adopted a modification water-based sol–gel method to synthesize nano-Li2TiO3 powders, which overcomes the poor phase purity, coarse grain, and inferior crushing strength described in the previous literature. In this paper, the thermal effect of the precursor, the crystal phase, and the morphology of the powders were characterized by thermogravimetric analysis/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The nano-structured Li2TiO3 powders with good dispersion and an average particle size of 20–50 nm were successfully synthesized at 600°C by controlling PH and hydrolysis rate. Moreover, the phase transition temperature for the monoclinic phase β-Li2TiO3 was as low as 600°C, which is lower than 750°C using the traditional solid-state method. Meanwhile, the morphology, porosity, crushing load, and thermal conductivity of ceramic pebbles are characterized systematically by using scanning electron microscope (SEM), mercury injection meter, compression strength equipment, and laser scattering method, respectively. Experimental results showed that the Li2TiO3 ceramic pebbles with a sphericity of .98, crush load of 48.4 N, and relative density of 90.03 % were successfully prepared at 1050°C for 2 h. This method will provide new guidance for the preparation of tritium breeders. 相似文献
11.
ABSTRACTZrB2–ZrC–SiC is one of the ultra-high-temperature ceramic composites with excellent properties. In this research, high-purity ZrB2–ZrC–SiC nanopowders were synthesised using a carbothermal reduction reaction at a relatively low temperature (1370°C) from cost-effective zirconium(IV) chloride by a sol–gel method. The effect of heat treatment temperature on the synthesis of ZrB2–ZrC–SiC composite powder was studied. X-ray diffractometry results showed that the phases ZrB2, β-SiC and ZrC were synthesised at 1370°C. The mean crystallite sizes for each of the phases were calculated using the Scherrer method. The specific surface area for the sample calcined at 1370°C was 81.479?m2?g?1. SEM observation revealed that the particles had a size lower than 250?nm. Backscattered electron image and map analysis with scanning electron microscopy showed that a suitable phase homogeneity was achieved, as confirmed by energy-dispersive X-ray spectroscopy. 相似文献
12.
《Ceramics International》2022,48(17):24471-24475
Al2O3–SiC composite powder (ASCP) was successfully synthesized using a novel molten-salt-assisted aluminum/carbothermal reduction (MS-ACTR) method with silica fume, aluminum powder, and carbon black as raw materials; NaCl–KCl was used as the molten salt medium. The effects of the synthesis temperature and salt-reactant ratio on the phase composition and microstructure were investigated. The results showed that the Al2O3–SiC content increased with an increase in molten salt temperature, and the salt–reactant ratio in the range of 1.5:1–2.5:1 had an impact on the fabrication of ASCP. The optimum condition for synthesizing ASCP from NaCl–KCl molten salt consisted of maintaining the temperature at 1573 K for 4 h. The chemical reaction thermodynamics and growth mechanism indicate that the molten salt plays an important role in the formation of SiC whiskers by following the vapor-solid growth mode in the MS-ACTR treatment. This study demonstrates that the addition of molten salt as a reaction medium is a promising approach for synthesizing high-melting-point composite powders at low temperatures. 相似文献
13.
Titanium carbide–titanium diboride (TiC–TiB2) composite powders were synthesised through a carbothermal reduction method by using titanium dioxide, boric acid, and different carbon sources (namely, carbon black, sucrose, and glucose) as starting materials. The thermal decomposition behaviour of the precursors was studied by thermogravimetry–differential thermal analyser. Phase compositions and morphologies of the synthesised products were characterised by X-ray diffractometer and scanning electron microscope. When n(Ti):n(B):n(C)?=?1.0:2.5:5.0, the blended stock mainly formed TiB2 with sucrose or glucose as a carbon source, whereas the stock produced TiC when carbon black was the source. At an optimum reaction temperature, the particles of the powders synthesised from carbon black as a carbon source were the smallest at approximately 100?nm. With increasing amount of boric acid in the precursor, the morphologies of the samples changed into less spherical particles, and more flaky grains and small particles with irregular structures were observed. 相似文献
14.
Jie Zhong Shuquan Liang Juan Zhao Winston Duo Wu Wenjie Liu Huanting Wang Xiao Dong Chen Yi-Bing Cheng 《Journal of the European Ceramic Society》2012,32(12):3407-3414
Novel mesoporous TiC microspheres with uniform size are synthesized via a sol–gel combined carbothermal reduction process. A microfluidic aerosol nozzle was used to produce droplets which were subsequently dried into gel microspheres under different conditions. The influence of drying temperatures and sol aging time on the diameters of obtained gel microspheres was investigated. The spherical morphology of TiC spheres can be maintained after a two-step heat treatment. Moreover, the TiC microspheres exhibit a high surface area of 267 m2/g and consist of 30–50 nm nano TiC grains and 4.5 nm pores. This unique nanostructure is directly formed from the carbothermal reduction of non-porous and template-free titania/carbon spheres. 相似文献
15.
《Ceramics International》2015,41(8):9383-9391
This study adopted the sol–gel method to synthesize p-type semiconductor CuCrO2 films and analyzed the effects of an annealing treatment, under a controlled argon atmosphere by changing the temperature and time, on the phase transformation, micro- and nano-structure, composition, and semiconductor properties of thin films. In the Cu–Cr–O phase transformation system, CuO, Cr2O3, and CuCr2O4 were the intermediate phases of the reaction for forming CuCrO2: in the metastable state reaction process, the composite phases changed into a single phase, CuCrO2; in the stable-state reaction process of CuCrO2, carbon elements of precursors were released and eliminated; and finally the optoelectronic properties of the CuCrO2 thin film were adjusted and changed. The CuCrO2 thin film possessed cell- and polygon-like shaped microstructures. The carbon content in the CuCrO2 film decreased, so the copper, chromium, and oxygen contents increased accordingly. The optical band gap of CuCrO2 thin film increased from 2.81 eV to 3.05 eV, while the resistivity decreased. The nanoscale crystal was identified which also of the delafossite CuCrO2 structure. Using the sol–gel method to prepare the CuCrO2 thin films, an appropriate annealing temperature and time were helpful in forming the single-phase CuCrO2; the decrease of precursor elements in the thin film could enhance the band gap and the conductivity of the material. 相似文献
16.
Mohammad Javad Nasr Isfahani Marjaneh Jafari Fesharaki Vladimir Šepelák 《Ceramics International》2013,39(2):1163-1167
The bulk NiFe2?xBixO4 ferrites with various Bi3+ concentration (x=0, 0.1, 0.15) were synthesized via sol–gel procedure, starting from nickel, bismuth and iron nitrate powders, followed by the conventional thermal treatment. The structural and magnetic properties of the as-prepared ferrites were studied by means of X-ray diffraction, alternating gradient force magnetometry and Faraday balance. The anisotropy constant was determined by the law of approach to saturation (LAS) model. An increasing Bi3+ concentration in NiFe2?xBixO4 leads to a decrease in the saturation magnetization, Néel temperature and the anisotropy constant of the material. 相似文献
17.
Non-wettability property makes graphite a good protecting material against the molten metal and/or slag. Properties like high oxidation potential between 600 and 1200 °C and non-wettability with water at room temperatures limits the usage of graphite in castable refractory applications. In this study, sol–gel method, which is a relatively cheaper process, was used. Boehmitic sol was obtained by hydrolyzing and peptiziting the alkoxide AIP (aluminum isopropoxide) used as alumina source. Then natural flake graphite was mixed with the boehmitic solution for coating of graphite. At 120 °C boehmitic sol coated graphite was dried and gelled. Then heat threaded at 550 °C for γ-Al2O3 transformation of boehmite. Products that obtained from the studies were characterized with FTIR and XRD tests. Alumina coated graphite samples were made by repeating the same steps and TG analysis were made to investigate the oxidation behaviour of the samples. Finally, SEM–EDS analyses were carried out to investigate the microscopic properties of the alumina coated graphite powders. 相似文献
18.
Chun Liu Weimin Wang Qianglong He Aiyang Wang Jie Wu Hao Wang Jinyong Zhang Zhengyi Fu 《Ceramics International》2018,44(16):19106-19112
Tantalum carbide (TaC) nanopowders were synthesized by a novel method combining the sol–gel and spark plasma sintering (SPS) processes using tantalum pentachloride (TaCl5) and phenolic resin as the sources of tantalum (Ta) and carbon (C), respectively. Gels of Ta-containing chelate with good uniformity and high stability were prepared by solution-based processing. The products with the structure of carbon-coated tantalum pentoxide (Ta2O5) were obtained after pyrolysis at 800?°C. Further heat treatment by SPS resulted in the fast formation of TaC at a relatively low temperature. The effects of the C/Ta molar ratio in the raw materials and the heat treatment temperature on the prepared powders were investigated. With increase in the C/Ta molar ratio from 3.75 to 4.25, the synthesis temperature, oxygen content and average crystallite size of the TaC powders decreased. Furthermore, the oxygen content of the powders prepared at the C/Ta molar ratio of 4.25 could be reduce by increasing the heat treatment temperature from 1400° to 1600°C, which unfortunately also induced a mean crystallite size increase from 30 to 100?nm. The TaC powders obtained at a comparatively low C/Ta molar ratios of 4.25 at 1500?°C had an average particle size of about 50?nm and a low oxygen content of about 0.43?wt%. 相似文献
19.
ABSTRACTAl2O3–SiC composite powders were prepared from kyanite tailings mixed with 20% excess carbon coke via carbothermal reduction (CR) reaction. The optimised synthesis condition for synthesising Al2O3–SiC composite powders was at 1600°C for 6?h. The equilibrium relationship curves of the condensed phases were presented and the temperature dependence of the phase composition was also studied. The results show that irregular Al2O3 and SiC grains first formed at 1500°C, and the elements C, O, Al, and Si randomly distributed in the each crystal particles. The amount of Al2O3–SiC composites increased with the increasing synthesis temperature and reaction time. Finally, Al2O3–SiC composite bulk materials were further prepared by pressureless sintering using the synthesised Al2O3–SiC composite powders as raw materials, and their mechanical properties were investigated in detail. All these results indicate that the CR method can offer a niche application for the development of kyanite tailings. 相似文献
20.
《Journal of the European Ceramic Society》2014,34(1):13.e1-13.e7
Zirconium carbide nanopowders were synthesized by a novel method combining the advantages of sol–gel method and rapid synthesis using pulse current heating. The core-shelled structure of ZrO2/C mixture was obtained during the sol–gel process, and further heat treatment in SPS led to the fast formation of ZrC. The particle size of ZrO2 played an important role in the synthesis of nanosized ZrC powders. In addition, the coalescence and grain growth of ZrC particles could be also limited due to the fast heating rate. As a result, the reactions were thoroughly completed at a relatively low temperature and ZrC nanopowders of 60–100 nm were obtained. The corresponding powders also had low oxygen content (∼0.64 wt%) and residual carbon content (∼0.27 wt%). Additive-free ZrC powders could be sintered to ∼99% relative density with an average grain size of 0.8 μm at low temperature of 1750 °C. 相似文献