首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrorist attacks using improvised explosive devices on reinforced concrete buildings generate a rapid release of energy in the form of shock waves. Therefore, analyzing the damage mode and damage mechanism of structures for different blast loadings is important. The current study investigates the behavior of one-way square reinforced concrete (RC) slabs subjected to a blast load through experiments and numerical simulations. The experiments are conducted using four 1000 mm × 1000 mm × 40 mm slabs under close-in blast loading. The blast loads are generated by the detonations of 0.2–0.55 kg trinitrotoluene explosive located at a 0.4 m standoff above the slabs. Different damage levels and modes are observed. Numerical simulation studies of the concrete damage under various blast loadings are also conducted. A three-dimensional solid model, including explosive, air, and RC slab with separated concrete and reinforcing bars, is created to simulate the experiments. The sophisticated concrete and reinforcing bar material models, considering the strain rate effects and the appropriate coupling at the air–solid interface, are applied to simulate the dynamic response of RC slab. The erosion technique is adopted to simulate the damage process. Comparison of the numerical results with experimental data shows a favorable agreement. Based on the experimental and numerical results, the damage criteria are established for different levels of damage. With the increase of the explosive charge, the failure mode of RC slab is shown to gradually change from overall flexure to localized punching failure.  相似文献   

2.
《Composites Part B》2007,38(5-6):535-546
The behavior of reinforced concrete panels, or slabs, retrofitted with glass fiber reinforced polymer (GFRP) composite, and subjected to blast load is investigated. Eight 1000 × 1000 × 70 mm panels were made of 40 MPa concrete and reinforced with top and bottom steel meshes. Five of the panels were used as control while the remaining four were retrofitted with adhesively bonded 500 mm wide GFRP laminate strips on both faces, one in each direction parallel to the panel edges. The panels were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg ANFO explosive charge located at a 3-m standoff. Blast wave characteristics, including incident and reflected pressures and impulses, as well as panel central deflection and strain in steel and on concrete/FRP surfaces were measured. The post-blast damage and mode of failure of each panel was observed, and those panels that were not completely damaged by the blast were subsequently statically tested to find their residual strength. It was determined that overall the GFRP retrofitted panels performed better than the companion control panels while one retrofitted panel experienced severe damage and could not be tested statically after the blast. The latter finding is consistent with previous reports which have shown that at relatively close range the blast pressure due to nominally similar charges and standoff distance can vary significantly, thus producing different levels of damage.  相似文献   

3.
This paper presents the results of tensile mechanical properties of FRP reinforcement bars, used as internal reinforcement in concrete structures, at elevated temperatures. Detailed experimental studies were conducted to determine the strength and stiffness properties of FRP bars at elevated temperatures. Two types of FRP bars namely: carbon fibre reinforced polyester bars of 9.5 mm diameter and glass fibre reinforced polyester bars of 9.5 mm and 12.7 mm diameter were considered. For comparison, conventional steel reinforcement bars of 10 mm and 15 mm diameter were also tested. Data from the experiments was used to illustrate the comparative variation of tensile strength and stiffness of different types of FRP reinforcing bars with traditional steel reinforcing bars. Also, results from the strength tests were used to show that temperatures of about 325 °C and 250 °C appear to be critical (in terms of strength) for GFRP and CFRP reinforcing bars, respectively. A case study is presented to illustrate the application of critical temperatures for evaluating the fire performance of FRP-reinforced concrete slabs.  相似文献   

4.
梁兴文  王莹  于婧  李林 《工程力学》2019,36(7):146-155
采用超高性能混凝土(UHPC)制作厚度为10 mm的模板,对UHPC模板进行施工阶段加载试验,评估其作为现浇楼板的模板的可行性;以UHPC模板作为底模,分别制作了6个简支单向板和1个两跨连续单向板,对其进行静力加载试验。结果表明,厚度为10 mm的UHPC板作为建筑模板时,模板下的支撑间距可取0.5 m,模板处于弹性状态下可施加的均布荷载为6 kN/m2,约为施工均布活荷载设计值的1.7倍。以UHPC作为模板的钢筋混凝土(RC)单向板,在板破坏时,UHPC模板与后浇混凝土界面未出现肉眼可见的粘结滑移现象;其受弯承载力约为相同截面尺寸及配筋的RC板的2倍。考虑UHPC模板及受拉区混凝土的受拉作用,建立了这种RC单向板的受弯承载力计算模型,模型的计算值与试验值符合较好。  相似文献   

5.
《Composites Part B》2007,38(5-6):712-719
Flat plate slab system is widely adopted by engineers as it provides many advantages . The system can reduce the height of the building, provide more flexible spatial planning due to no beams present, and further reduce the material cost. However, the main problem in practice is the brittle failure of flat plate slab under punching shear. In this paper, the punching shear behavior has been studied and an experimental work using carbon fiber reinforced polymer (CFRP) rods as shear reinforcement has been conducted in flat plate slab system.This exploratory research is to study the behavior of the flat plate slab with CFRP-rods reinforced in punching shear zone under constant gravity load and lateral displacements in a reversed cyclic manner. Three specimens of interior column-slab connection specimens were tested including one standard specimen without any shear reinforcement, the second one reinforced with CFRP-rods and the third one reinforced with stud rails as the reference to the second one. The slabs were 3000 mm long × 2800 mm wide × 150 mm deep, and were simply supported at four corners. Punching shear failure occurred for the standard specimens at a lateral drift-ratio, lateral drift divided by the length of vertical member, of approximately 5%. The specimen reinforced by CFRP-rods had significant flexural yielding and sustained deformations up to a drift ratio of approximately 9% without significant losses of strength, and punching shear was not observed in this specimen. The displacements increased up to 1.79 times larger than that of the standard specimen. And this specimen showed 42% superior ductile performance than the standard specimen and even the same capability with the stud-rail reinforced specimen. The results of the experiment indicate that CFRP-rods using in the flat slab has a better foreground.  相似文献   

6.
A total of eight reinforced concrete slabs, 2440 × 600 × 125 mm strengthened with different layers and configurations of CFRP sheets were fabricated and tested. In addition, nonlinear finite element analysis (NLFEA) using ANSYS package was used to simulate the behavior of the test specimens. After reasonable validation of NLFEA with the experimental test results of companion slabs, NLFEA was expanded to provide a parametric study of eighteen slabs. The load–deflection, load strain, and failure modes obtained from the experimental test results and the NLFEA evidently confirmed that strengthening of under-reinforced concrete slabs with CFRP improves the flexural strength capacity and reduce the ductility. This was observed for both types of CFRP. The increase in the flexural strength and the reduction in the ductility increased with the increase in the number of CFRP layers. It was concluded that CFRP strengthening of slabs could be categorized as effective, economical, and successful only if substantial increase in the flexural strength capacity is achieved without changing the failure mode to a shear failure mode at the face of the supports or to a compression failure mode. Comparison between the two CFRP types, for almost equivalent applied area of CFRP, showed that the type of CFRP has significant influence on the behavior of the strengthened slabs. The difference is attributed to the difference in the mechanical properties and the bonding quality of the CFRP material.  相似文献   

7.
Ionoplast material has been recently introduced and extensively used as interlayer material for laminated glass to improve its post-glass breakage behavior. Due to its sound mechanical performance, the applications of laminated glass with ionoplast interlayer have been widely extended to the protection of glass structures against extreme loads such as shock and impact. The properties of this material at high strain rates are therefore needed for properly analysis and design of such structures. In this study, the mechanical properties of ionoplast material are studied experimentally through direct tensile tests over a wide strain rate range. The low-speed tests are performed using a conventional hydraulic machine at strain rates from 0.0056 s−1 to 0.556 s−1. The high strain-rate tests are carried out with a high-speed servo-hydraulic testing machine at strain rates from approximately 10 s−1 to 2000 s−1. It is found that the ionoplast material virtually exhibits elasto-plastic material properties in the strain rate range tested in this study. The testing results show that the material behavior is very strain-rate dependent. The yield strength increases with strain rate, but the material becomes more brittle with the increase in strain rate, with the ultimate strains over 400% under quasi-static loading, and decreasing to less than 200% at strain rate around 2000 s−1. The testing results indicate that simply applying the static material properties in predicting the structure responses of laminated glass with ionoplast interlayer subjected to blast and impact loads will substantially overestimate the ductility of the material and lead to inaccurate predictions of structure response. The testing results obtained in the current study together with available testing data in the literature are summarized and used to formulate the dynamic stress–strain curves of ionoplast material at various strain rates, which can be used in analysis and design of structures with ionoplast material subjected to blast and impact loads.  相似文献   

8.
Accurate information on the actual performance of the structural system after retrofit is an essential part of a cost-effective bridge management program. This paper summarizes the results of a thorough experimental program concerning the reinforced concrete deck of a real 40 year-old viaduct. The structure exhibited severe damage at the extrados mainly due to environmental agents, chemical attack and action of asphalt milling machines. Samples of the deck were cut and carried to the laboratory in order to assess the possibility of retrofit. The design of retrofit was aimed at increasing the load carrying capacity through replacement of the deteriorated concrete with a new concrete overlay and strengthening in flexure for both negative (hogging) and positive (sagging) bending moments. Experimental testing on small specimens and nondestructive techniques were carried out to identify the material properties and to evaluate the level of damage. The bonding between external reinforcement and the original or new (standard or polymer-modified) concrete was assessed through single-shear push–pull tests on 33 prismatic specimens of 100 × 200 × 500 mm3 strengthened with CFRP strips. The efficiency of the retrofit techniques was checked at the structural level through four-point bending tests on eight slabs of 500 × 200 × 2000 mm3. This research can contribute to guidelines for concrete patch repair of FRP-retrofitted concrete bridge decks, to ensure better long-term performance under service loads and environmental effects.  相似文献   

9.
Self compacting concrete mixtures with the use of ladle furnace slag as filler and steel fibers as reinforcement were produced and tested in the laboratory. Different contents of ladle furnace slag filler, ranging from 60 to 120 kg/m3, and steel fibers, ranging from 0% to 0.7%, were used. The different mixtures were tested in the fresh state for fluidity, passing ability and resistance to segregation and in the hardened state for compressive strength, fracture toughness, freeze-thawing resistance and chloride penetration resistance. The test results showed that ladle furnace slag can be used as filler for self compacting concrete, as adequate consistency and workability was achieved, while compressive strength and durability were improved. Ladle furnace slag can also be combined with steel fibers, which considerably increase fracture toughness, in order to produce a high performance self compacting concrete using a low-cost industrial by-product such as ladle furnace slag.  相似文献   

10.
This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ  1. However, a 0.5 safety factor should be included in the formula for ρ < 1.  相似文献   

11.
The overall aim of this paper is to examine the effectiveness and structural implications of electrochemical chloride extraction when applied to reinforced concrete beams containing chlorides as well as chlorides and reactive aggregates. Twelve beams, 100 × 165 × 2300 mm, were altogether cast and tested. The main variables in the beams were water/cement ratio, chloride content and reactive aggregates. Four of the beams contained a reactive aggregate in the concrete mix. All the beams were kept dry, after initial curing, to see if the electrochemical process triggered alkali silica reactivity. The chloride extraction process used an anode system of oxide coated platinised titanium mesh and saturated calcium hydroxide solution as electrolyte. The applied cathodic current density was about 1 A/m2. Chloride analysis of the concrete in the beams was carried out before, during and after the electrochemical treatment, and the pH of the electrolyte and any alkali silica reactivity were regularly monitored. The beams were subsequently tested to failure at an age of about 400 days. It is shown that electrochemical treatment is an effective and efficient process to remove chlorides from the cover concrete and from the zone containing steel reinforcement without any adverse effect on structural strength, bond or shear. There was clear evidence that unlike cast-in chlorides, the chloride extraction process will be far more efficient in real structures where the majority of chlorides that would have penetrated into the concrete will be from the outside aggressive environment and which will remain mostly in the concrete cover zone. However, further research is needed to establish the long term effects of alkali silica reactivity initiated by the CE process, and the structural implications of carrying out CE in the field if the dead and live loads carried by the beams are not relieved.  相似文献   

12.
This study investigated the fatigue bond behaviour of corroded steel reinforced concrete beams. Nine beams (152 × 254 × 2000 mm [6 × 10 × 78.74 in.]) were constructed and tested. Bond failure occurred in all the beams. The variables in this test series were: the type of load applied (monotonic or repeated loading), the repeated load range, whether the reinforcement inside the beam was corroded or not, and whether a carbon fibre reinforced polymer (CFRP) repair method was used or not. The fatigue life of the beams varied linearly with the range of applied load with a very shallow slope. Corroding the beams to a low corrosion level decreased the fatigue bond strength by about 30%. Corrosion caused the concrete in between the lugs of the reinforcing bars to be partially crushed due to the formation of the rust products from the corrosion process. This reduced the strength of the concrete keys and increased the rate of slip in the bar under repeated loading.  相似文献   

13.
For all types of concrete structures, controlling of cracking, as well as the enhancement of serviceability and ultimate flexural capacity are important issues for deck slabs. This study presents an experimental campaign and accompanying nonlinear analysis of a series of Strain Hardening Cementitious Composite (SHCC) and reinforced concrete slab systems, simply-supported and subjected to four-point loading. In order to improve flexural performance both at the service and ultimate limit states, an SHCC layer with thickness of 150–400 mm was placed on the soffit of the composite slab; the SHCC was manufactured using two different processes, namely cast-in-situ SHCCs and extruded precast SHCC panel. Nonlinear analysis of SHCC and reinforced concrete slabs was also carried out to predict moment and curvature as well as deflections of the slab systems. The developed slab systems were found to have enhanced performance with regard to both at serviceability and flexural capacity, compared to the conventional reinforced concrete slab.  相似文献   

14.
The effect of corrosion of longitudinal reinforcement on the structural performance of shear-critical reinforced concrete (RC) deep beams was experimentally investigated. A total of eight medium-scale reinforced concrete beams were constructed. The beams measured 150 mm wide, 350 mm deep and 1400 mm in length. The test variables included: corrosion levels (0%, 5%, and 7.5%), existence of stirrups and FRP repair. Six beams were subjected to artificial corrosion whereas two beams acted as control un-corroded. Following the corrosion phase, all beams were tested to failure in three point bending. The test results revealed that corrosion of properly anchored longitudinal steel reinforcement does not have any adverse effect on the behaviour of shear critical RC deep beams. Corrosion changed the load transfer mechanism to a pure arch action and as a result the load carrying capacity was improved. A strut and tie model was proposed to predict the failure loads of shear-critical RC deep beams with corroded longitudinal steel reinforcement. The predicted results correlated well with the experimental results.  相似文献   

15.
The span limits of two glass fiber-reinforced polymer (GFRP) bridge concepts involving GFRP-balsa sandwich plates are discussed. The sandwich plates were either used directly as slab bridges or as decks of a hybrid sandwich-steel girder bridges. In the latter case, the potential of the sandwich decks to replace reinforced concrete (RC) decks was also evaluated. Taking the limits of manufacturing into account (800 mm slab thickness), maximum bridge spans of approximately 19 m can be reached with FRP-balsa sandwich slab bridges, if a carbon-FRP (CFRP) arch is integrated into the balsa core. Above this limit, hybrid sandwich-steel girder bridges can be used up to spans of 30 m. RC deck replacement requires timber and steel plate inserts into the balsa core above the steel girders. GFRP-balsa sandwich slabs or decks exhibit full composite action between lower and upper face sheets. Stress concentrations occur at the joints between balsa core and timber inserts which however can effectively be reduced by changing from butt to scarf joints.  相似文献   

16.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

17.
Group studs, arranging studs in group, has been applied as shear connectors in steel and concrete composite structures for over 50 years. Concrete strength and stud dimension are the crucial factors affecting the failure appearance of shear studs in push-out test, which mainly consists of stud shear fracture, stud bending deformation and local concrete crush. Since the detailed failure development has rarely been concerned, a parametrical push-out FEM analysis with damage plasticity models on failure development of group studs with effects of concrete strength and stud dimension was executed. In this study, concrete compressive strength of 30 MPa, 40 MPa and 50 MPa, shank diameters including 13 mm, 16 mm, 19 mm and 22 mm and stud heights including 80 mm and 100 mm were the parameters. In general, it was found that when under effect of concrete strength, shear stiffness of stud with large shank diameter performed more stable while its shear strength may be influenced more apparently. Meanwhile, the analyzed concrete damage, stiffness degradation and ultimate deformation of stud were discussed as well. The failure development of push-out model was reflected by the development of equivalent stud bending arm in terms of shear transfer between steel and concrete through studs, which experienced three steps due to the degradations of concrete and stud modulus. It also shows that models with lower concrete compressive strength or more flexible stud in combination with high concrete strength can lead to relatively obvious stud bending deformation.  相似文献   

18.
樊健生  王哲  杨松  陈钒  丁然 《工程力学》2021,38(4):30-43
超高性能混凝土(Ultra-high performance concrete,简称UHPC)桥面板具有良好的应用前景.桥面板在车轮荷载作用下存在冲切和弯曲问题,以此为背景设计了系列UHPC板件试验,主要研究板的厚度、保护层厚度、配筋率及加载区域面积等参数对试验板抗冲切及抗弯性能的影响,分析了不同试件的破坏模式、挠度、...  相似文献   

19.
Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the experimental data and provisions of existing codes and standards. Possible ways for developing modern design techniques for SFHSC structures are emphasized.  相似文献   

20.
The majority of our bridges were constructed with conventional civil engineering materials of steel and concrete in a typical slab on girder or truss construction. Reinforced concrete bridge decks have approximately 40% life of the steel girders that support these structures. In order to support the use of alternative materials to replace deteriorating concrete decks, this paper outlines the Load and Resistance Factor Design (LRFD) of Fiber Reinforced Polymer composite (FRP) panel highway bridge deck. The deck would be of a sandwich construction where 152.4 mm × 152.4 mm × 9.5 mm square pultruded glass FRP (GFRP) tubes are joined and sandwiched between two 9.5 mm GFRP plates. The deck would be designed by Allowable Stress Design (ASD) and LRFD to support AASHTO design truckload HL-93. There are currently no US standards and specifications for the design of FRP pultruded shapes including a deck panel therefore international codes and references related to FRP profiles will be examined and AASHTO-LRFD specifications will be used as the basis for the final design. Overall, years of research and laboratory and field tests have proven FRP decks to be a viable alternative to conventional concrete deck. Therefore, conceptualizing the design of FRP bridge decks using basic structural analysis and mechanics would increase awareness and engineering confidence in the use of this innovative material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号