首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hybrid sol–gel coating on Al 2024-T3 was modified by adding polyaniline, TiO2, or γ-Al2O3 nanoparticles in the formulation separately. The coating was then used as an adhesive to bond Al 2024-T3 alloys, forming a single lap joint. The bond strength of the sol–gel coating was investigated using a universal tensile test machine. The lap shear strength of the original sol–gel coating was about 1.38 MPa and it was increased up to 2.26 MPa after the modification by adding 0.05 wt% PANI microparticles in the sol–gel coating. The small increase in strength was attributed to an improvement in its adhesive flexibility because of incorporation of the long-chain organic polymer in its structure. Furthermore, the addition of different amounts of TiO2 nanoparticles in the unmodified sol–gel coating also led to an increase in shear strength compared to the undoped sol–gel coating. Typically, a sol–gel coating containing 2.0 wt% of TiO2 recorded the highest adhesive strength of about 4.0 MPa. A similar increase in strength was observed when doping γ-Al2O3 nanoparticles into the original hybrid sol–gel coating. Adding 0.5 wt% of γ-Al2O3 in the sol–gel coating increased the adhesive bonding strength up to 4.48 MPa. The fracture surface of the specimen was separately observed by SEM and Optical Microscopy in order to examine potential evidences of mechanism and nature of failure. The reason why the adhesive strength increased after the modification of the sol–gel coating is discussed in this article.  相似文献   

2.
《应用陶瓷进展》2013,112(4):151-154
Abstract

Hydrated titanium oxide gel samples containing 5% Fe, La, Ce, and Y oxides were prepared. Discs of size 10 mm dia. and ~1·5 mm thickness pressed from dry precursor gels were heated to temperatures in the range of 400–1000°C at intervals of 200 K for 2 h. The thermal behaviour of the doped and undoped gels was studied by DTA. The phase changes occurring in the gel precursors were identified using X-ray diffraction (XRD). The changes in electrical response of doped and undoped samples were monitored at room temperature by impedance spectral measurements. La2O3 was found to be the most effective in increasing the anatase to rutile transformation temperature while Fe2O3 has the reverse effect. Impedance spectroscopy studies reflected the conducting nature of the anatase matrix and the insulating rutile phase and appear to be simple tool for characterisation of such systems by bulk measurements.  相似文献   

3.
Transparent semiconductor ZnO thin films were spin-coated onto alkali-free glass substrates by a sol–gel process. The influence of ZnO sols synthesized via different solvents (2-ME, EtOH or IPA) on the surface morphologies, microstructures, optical properties and resistivities of the obtained films were investigated. The as-coated films were annealed in ambient air at 500 °C for 1 h. X-ray diffraction results showed all polycrystalline ZnO thin films to have preferred orientation along the (0 0 2) plane. The surface morphologies, optical transmittances and resistivity values of the sol–gel derived ZnO thin films depended on the solvent used. The ZnO thin films synthesized with IPA as the solvent exhibited the highest average transmittance 92.2%, an RMS roughness of 4.52 nm and a resistivity of 1.5 × 105 Ω cm.  相似文献   

4.
Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content.  相似文献   

5.
Machining of steel or iron-based alloys with diamond tools leads to rapid tool failure — probably due to chemical wear. The use of monocrystalline diamond tools has, up to now, been obligatory for precision machining. Coating the diamonds with a thin but hard and chemically inert alumina film may overcome the problem. Alumina coatings were deposited by sol–gel techniques. It was shown that a very thin TiN intermediate layer, deposited by reactive sputtering, results in a good adhesion of the alumina coatings to the monocrystalline diamonds. The microstructure of the coatings was characterized by field-emission scanning electron microscopy (FE-SEM) and by transmission electron microscopy (TEM). The deposited coatings showed a nanocrystalline, dense microstructure. The hardness of the coatings was investigated by ultramicrohardness measurements (UMH).  相似文献   

6.
Thin alumina coatings containing zirconia or alumina nanoparticles having diameter of ~20–30 nm were deposited by the sol–gel dip-coating process on silicon wafers. The mass content of nanoparticles in the alumina coating was fixed at 15% in relation to the theoretical mass of alumina matrix resulted from the amount of the applied precursor. Atomic force microscopy (AFM) was used to image the surface topography of as-made coatings and find out the wear level after frictional tests. Tribological tests were performed with the use of a microtribometer operating in the load range of 30–100 mN. It was found that the presence of α-alumina (corundum) or zirconia nanoparticles enhances the tribological performance of alumina layers annealed at 100 °C by decreasing the average wear rate by 20% and 63% for zirconia and corundum nanoparticles, respectively. No wear was observed for samples containing both types of nanoparticles annealed at 500 °C.  相似文献   

7.
《应用陶瓷进展》2013,112(5):255-264
Abstract

Pure titania pulp containing amorphous titania was heated at different temperatures and times. Above 650°C anatase phase was evolved and between 900 and 1000°C, anatase–rutile transformation occurred. The anatase–rutile transformation in TiO2 in the presence of different transition metal oxides, namely Fe2O3, Cr2O3, NiO, CuO and MnO2 under argon and hydrogen atmospheres was investigated. The different phases of TiO2 were determined using powder X-ray diffraction (XRD). The anatase–rutile transformation temperature was found to be lowered in the presence of transition metal oxides. The transformation temperature was found to vary much in argon and hydrogen atmospheres compared to air in the presence of the metal oxides. Also the method of preparation of metal oxide doped TiO2 influences rutilation. Other methods such as chemical analysis, surface area measurements and crystallite size calculation were used for the characterisation of the samples. The surface area of heated samples was found to be decreased while crystallite size increased due to rutilation on heating. The samples were also observed under a scanning electron microscope to characterise the microstructural changes associated with each thermal treatment and atmosphere. The morphology of doped titania changes much on heating due to phase modification. The atmosphere of heating also has important effect on deciding the morphology of rutilated titania.  相似文献   

8.
In the present study, after successful synthesis of nano-HA powders by chemical precipitation method, wire-brushing (WB) treatment was effectively employed on Ti–6Al–4V substrates for the modification of electrophoretically deposited nano-hydroxyapatite coatings. The precipitated nano-HA particles were characterized by XRD, FT-IR, and DLS analyses. The morphology and particle size of synthesized nano-HA particles was observed by FE-SEM. The Ti–6Al–4V plates were initially wire brushed at different times and rotational speeds. Microhardness profile and AFM analysis of substrates were then studied. It was found that WB treatment at 16,000 rpm for 60 s leads to a maximum enhancement in the hardness and roughness of surface. Then, the electrophoretic deposition of nano-HA particles was carried out at constant voltage of 30 V and after 60 s. The results of adhesion test and potentiodynamic polarization measurements showed that WB treatment on Ti–6Al–4V substrates could efficiently increase the bonding strength between coating and substrate as well as corrosion resistance.  相似文献   

9.
This research article reports on the response of various hybrid sol–gel materials when applied as coatings to pre-treated bare AA2024 substrates, to mechanical indentation and cyclic thermal stimuli, in order to determine their usefulness in aeronautical applications. Three groups of hybrid sol–gel-coated samples were prepared using various organosilanes and transition metal oxides. The characterization of the materials revealed that the presence of the organic functionalities, especially the methacrylate group, has a noticeable effect on the mechanical response of the hybrid coatings, in particular their flexibility. The presence of methacrylate group in the cured material gives it ability to flex which influenced the thermal fatigue characteristics of the coatings which are able to withstand the cyclic temperature regimes of 82 ± 3 to ?37 ± 3°C over 25 2 h cycles. This capability to maintain substrate protection is reflected in the corrosion resistance of the coatings as measured using electrochemical impedance spectroscopy and accelerated exposure testing. This result is important, as it shows that hybrid sol–gel materials can be used in applications where protecting a metal or ally substrate is paramount, especially in thermally volatile environments.  相似文献   

10.
Development of the solid surfaces with water-repellent and self-cleaning ability has attracted much research interest in recent years. In the present research work, we have prepared water repellent silica coatings on glass at room temperature (~27 °C) by sol gel process and surface silylation technique. Coating sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS), methanol (MeOH) and water (H2O) constant at 1:12.36:4.25, respectively, with 0.01 M NH4F. The dip coated silica films were surface silylated using two different silylating agents namely hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDZ). The HMDSO and HMDZ in hexane solvent were varied from 0 to 1 vol.% and silylation period was varied from 1 to 3 h. The HMDSO and HMDZ modified films showed dense and porous surface morphology, respectively. The HMDSO modified silica films showed static water contact angle of 122° whereas HMDZ modified films showed 165°. The HMDZ modified films displayed the extreme water repellency comparing with that of lotus leaves. The silica films were characterized by surface profilometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared microscopy, thermal and chemical aging tests, optical transmission and static water contact angle measurements.  相似文献   

11.
The design and development of suitable multilayered functional coatings for delaying corrosion advance in metals and become controlled-release vehicles requires that the properties of the coatings are known. Coatings prepared by the sol–gel method provide a good approach as protective layers on metallic surfaces. This kind of coating can be prepared from pure chemical reagents at room temperature and atmospheric pressure, with compositions in a very wide range of environmentally non-aggressive precursors. Sol–gel coatings based on siloxane bonded units were prepared, starting with an organic–inorganic hybrid system. Synthesis procedures included acid-catalysed hydrolysis, sol preparation, and the subsequent gelation and drying. The alkoxide precursors used were methyl-triethoxysilane (MTMOS) and tetraethyl-orthosilicate (TEOS) in molar ratios of 10:0, 9:1, 8:2 and 7:3. After determination of the optimal synthesis parameters, the materials were characterised by solid 29Si nuclear magnetic resonance (29Si NMR), Fourier transform infrared spectroscopy (FTIR), contact angle measurement and electrochemical impedance spectroscopy (EIS) test. Finally, the materials were assayed by controlling their weight in contact with water, to determine their ability to degrade by hydrolysis. Electrochemical analysis reveals the formation of pores and water uptake during the degradation. The quantity of TEOS is one of the principal parameters that determine the kinetics of degradation. There is a correlation between the degradation process obtained for long periods and the electrochemical parameters obtained by EIS in short times. The study tries to incorporate knowledge that can be used for designing the degradation process of the functional coatings and to control their properties in short times.  相似文献   

12.
Organic–inorganic hybrid coatings on glass substrates with superhydrophobic properties and with improved scratch resistance were obtained by means of applying a multilayer approach including multiple sol–gel processes. The coatings exhibited a water contact angle (WCA) higher than 150°. Ultraviolet (UV)-curable vinyl ester resins and vinyltriethoxysilane (VTEOS) as coupling agent were employed to increase the adhesion between substrate and the inorganic layers. The surfaces were characterized by means of dynamic contact angle and roughness measurements. Indeed, the occurrence of superhydrophobic behavior was observed. The scratch resistance of the hybrid coatings was tested to evaluate the adhesion of the coatings to the glass substrate. The proposed preparation method for scratch resistant, mechanically stable, superhydrophobic coatings is simple and can be applied on large areas of different kinds of substrates.  相似文献   

13.
Gelatin from cold fish skin has strong mechanical properties and biodegradability. Cold fish gelatin was introduced into waterborne polyurethane (WPU) by covalent bonding to reinforce and render biodegradability of WPU. For this, gelatin was chemically modified with vinyltrimethoxysilane (VTMS) via the sol–gel type reactions and incorporated into hydroxyl ethyl acrylate (HEA) termini of WPU by UV curing. Covalent incorporations provided the hybrids with enhanced water resistance, hardness, glassy and rubbery state moduli, yield strength, and thermal resistance of soft segment along with significantly enhanced biodegradability both in trypsin solution and soil.  相似文献   

14.
The behavior of the particle size distribution (PSD) during the preparation of sol–gel silica-based antireflective coatings (ARCs) by dip coating was examined. It was found that the PSD after deposition differs dramatically from the PSD in the sol–gel suspensions, with the PSD after deposition being much narrower. A correlation between a decrease in the porosity of the ARC and an increase in the dispersity of the deposited PSD was also found. Hence, controlling the PSD during deposition has a direct effect on the resulting porosity and thus on the reflectance of an ARC. It was found that the temperature and deposition speed during dip coating, respectively, have very little effect on the deposited PSD. It was found that the PSD of the sol–gel suspension control the content of the deposited PSD, but does not change the range of sizes deposited. Finally, it was found that random-uniform particle placement results in elongated sequences of four or more particles, which supports our previous conclusion that the linear permittivity mixing rule is most appropriate for Stöber-based ARCs.  相似文献   

15.
This work presents the silane-based sol–gel coatings that prepared by in situ doping 8-hydroxyquinoline as corrosion inhibitor for the protection of AA 2024-T3. The morphology and thickness of the sol–gel coatings were observed by scanning electron microscope (SEM). Immersion tests and electrochemical impedance spectroscopy (EIS) were used to study the corrosion resistance of the blank and 8-hydroxyquinoline doped sol–gel coatings. The results indicate that the addition of 8-hydroxyquinoline effectively improved the corrosion resistance of the sol–gel coatings. The self-healing effect of 8-hydroxyquinoline on the corrosion in the defects of sol–gel coating was assessed by scanning vibrating electrode technique (SVET) and proved by the results of energy-dispersive X-ray spectroscopy (EDS) mapping.  相似文献   

16.
The aim of this work is the synthesis and investigation of silane based organic–inorganic hybrid coatings, which can be used to improve the corrosion performance of steel structures subjected to a marine environment. The silane based sol–gel coatings were prepared by dip coating 304L stainless steel in a solution of organically modified silica sol made through hydrolysis and condensation of 3-glycidoxypropyl-trimethoxysilane (GPTMS) as precursor and bisphenol A (BPA) as a cross-linking agent in an acid catalyzed condition. The influence of the addition of cerium and the use of bisphenol A as a cross-linking agent on the microscopic features and morphology as well as on the corrosion resistance of the coatings were examined using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), neutral salt spray tests, potentiodynamic polarization and electrochemical impedance techniques. Results show that cerium modified nano-hybrid coatings exhibit a superior corrosion inhibition performance to that displayed by silica hybrid coatings. Additionally, data showed that the bisphenol A as a cross-linking agent has a significant effect on the morphology and corrosion resistance of the cerium doped silica coating. Omitting the use of bisphenol A causes the creation of defects/cracks in the coating, thereby promoting diffusion of the aggressive electrolyte toward the substrate and decreasing the corrosion resistance of the coating.  相似文献   

17.
《应用陶瓷进展》2013,112(5):219-224
Abstract

Rutile solid solutions Crx Ti1-2xTaxO2 (0 < x < 0·5) have been synthesised by: firing mixtures of Cr2O3 , Ta2O5 , and TiO2 (anatase); firing colloidal gels obtained from TiCl4 , TaCl5 , and CrCl3 . 6H2O; and firing polymeric gels prepared from Ti4+ isopropoxide, Ta5+ethoxide, and Cr3+ acetylacetonate at 300–1300°C. Samples were characterised by XRD, differential thermal and thermogravimetric analysis, UV visible spectroscopy, Cielab colour parameter measurements, and electron microscopy. In samples synthesised from oxide mixtures, CrTaO4 (rutile structure) appeared as an intermediate phase in the formation of the solid solutions and a positive departure from Vegard's law was observed. Ta2O5 segregation in gel samples seems to prevent the formation of material consisting only of rutile. The distortion of MO6 octahedra varies as x increases. The chemical, structural, and thermal stability, and the colouration obtained on glazes containing 3 wt-%samples, indicate their potential for use as ceramic pigments. Under the experimental conditions used, the materials prepared by sol–gel synthesis were not found to be better than those prepared from oxide mixtures.  相似文献   

18.
Titania-containing organic–inorganic hybrid sol–gel films have been developed as an alternative to chromate-based coatings for surface pretreatment of aluminium alloys. Stable hybrid sols were prepared by hydrolysis of 3-glycidoxypropyltrimethoxysilane and different titanium organic compounds in 2-propanol solution in the presence of small amounts of acidified water. Different diketones were used as complexing agents in this synthesis for controllable hydrolysis of titanium organics. The properties of the obtained coatings were compared with those of zirconia-containing films. Electrochemical impedance spectroscopy (EIS) measurements and standard salt spray tests were performed to investigate the corrosion protection performance of the hybrid coatings. It was revealed that their protective properties depend significantly on the nature of metalorganic precursors and complexing agents used in the process of sol preparation. The best anticorrosive protection of AA2024 in chloride solutions is provided by the titania-containing sol–gel films prepared with titanium(IV) tetrapropoxide and acetylacetone as starting materials. In the case of zirconia-containing films, better protective properties were found when applying ethylacetoacetate as a complexing agent.  相似文献   

19.
20.
Hybrid silica sol–gel coatings were prepared on mild steel substrate by dip coating technique. The coatings were subsequently heat treated at 200 °C in order to improve their corrosion properties. The coating sols were synthesized using Glycidoxypropyltrimethoxysilane (glymo) and Aminopropylethoxysilane (ameo) as precursor materials. Potentiodynamic polarization curves were derived and Electrochemical Impedance Spectroscopy (EIS) measurements were made in NaCl solution. The surface and cross-section morphology of coated specimens were characterized by scanning electron microscopy (SEM). Fourier transformed infrared (FTIR) analysis was used to identify the presence of various functional groups in the coating solutions. A comparison of the corrosion resistance of the coated and uncoated mild steel was presented. The results indicated that the corrosion resistance of the coated mild steel was improved considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号