首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, first, Gd2Zr2O7/ceria–yttria stabilized zirconia (GZ/CYSZ) TBCs having multilayered and functionally graded designs were subjected to thermal shock (TS) test. The GZ/CYSZ functionally graded coatings displayed better thermal shock resistance than multilayered and single layered Gd2Zr2O7 coatings. Second, single layered YSZ and functionally graded eight layered GZ/CYSZ coating (FG8) having superior TS life time were selected for CMAS + hot corrosion test. CMAS + hot corrosion tests were carried out in the same experiment at once. Furthermore, to generate a thermal gradient, specimens were cooled from the back surface of the substrate while heating from the top surface of the TBC by a CO2 laser beam. Microstructural characterizations showed that the reaction products were penetrated locally inside of the YSZ. On the other hand, a reaction layer having ∼6 μm thickness between CMAS and Gd2Zr2O7 was seen. This reaction layer inhibited to further penetration of the reaction products inside of the FG8.  相似文献   

2.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

3.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

4.
《Ceramics International》2016,42(9):11118-11125
Nanostructured 4SYSZ (scandia (3.5 mol%) yttria (0.5 mol%) stabilized zirconia) and 5.5 SYSZ (5 mol% scandia and 0.5 mol% yttria) thermal barrier coatings (TBCs) were deposited on nickel-based superalloy using NiCrAlY as the bond coat by plasma spraying process. The thermal shock response of both as-sprayed TBCs was investigated at 1000 °C. Experimental results indicated that the nanostructured 5.5SYSZ TBCs have better thermal shock performance in contrast to 4SYSZ TBCs due to their higher tetragonal phase content and higher fracture toughness of this coating  相似文献   

5.
Thermal insulation applications have long required materials with low thermal conductivity, and one example is yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ) as thermal barrier coatings used in gas turbine engines. Although porosity has been a route to the low thermal conductivity of YSZ coatings, nonporous and conformal coating of YSZ thin films with low thermal conductivity may find a great impact on various thermal insulation applications in nanostructured materials and nanoscale devices. Here, we report on measurements of the thermal conductivity of atomic layer deposition-grown, nonporous YSZ thin films of thickness down to 35 nm using time-domain thermoreflectance. We find that the measured thermal conductivities are 1.35–1.5 W m−1 K−1 and do not strongly vary with film thickness. Without any reduction in thermal conductivity associated with porosity, the conductivities we report approach the minimum, amorphous limit, 1.25 W m−1 K−1, predicted by the minimum thermal conductivity model.  相似文献   

6.
This paper reports the effect of Fe2O3 doping on the densification and grain growth in yttria-stabilized zirconia (YSZ) during sintering at 1150 °C for 2 h. Fe2O3 doped 3 mol% YSZ (3YSZ) and 8 mol% YSZ (8YSZ) coatings were produced using electrophoretic deposition (EPD). For 0.5 mol% Fe2O3 doping, both 3YSZ and 8YSZ coatings during sintering at 1150 °C has similar densification. However, a significant grain growth occurred in 8YSZ during sintering, whereas grain size remains almost constant in 3YSZ. XRD results suggest that Fe2O3 addition substitutionally and interstitially dissolved into the lattice of 3YSZ and 8YSZ. In addition, colour of 3YSZ and 8YSZ changes differently with doping of Fe2O3. A Fe3+ ion interstitial diffusion mechanism is proposed to explain the densification and grain growth behaviour in the Fe2O3 doped 3YSZ and 8YSZ. A retard grain growth observed in the Fe2O3 doped 3YSZ is attributed to Fe3+ segregation at grain boundary.  相似文献   

7.
《Ceramics International》2016,42(11):13047-13052
In this article, the nanostructured 2 mol% Gd2O3-4.5 mol% Y2O3-ZrO2(2GdYSZ) coating was developed by the atmospheric plasma spraying technique. And the microstructure and thermal properties of plasma-sprayed 2GdYSZ coating were investigated. The result from the investigation indicates that the as-sprayed coating is characterized by typical microstructure consisting of melted zones, nano-zones, splats, nano-pores, high-volume spheroidal pores and micro-cracks. The 2GdYSZ coating shows a lower resistance to destabilization of the metastable tetragonal (t′) phase compared to the yttria stabilized zirconia(YSZ). The thermal diffusivity and thermal conductivity of the nano-2GdYSZ coating at room temperature are 0.431 mm2 s−1 and 1.042 W/m K, respectively. Addition of gadolinia to the nano-YSZ can significantly reduce the thermal conductivity compared to the nano-YSZ and the conventional YSZ. The reduction is mainly attributed to the synergetic effect of gadolinia doping along with nanostructure.  相似文献   

8.
《Ceramics International》2016,42(7):7950-7961
A composite coating composed of La2Ce2O2 (LCO) and yttria-stabilized zirconia (YSZ) in a weight ratio of 1:1 was deposited by the plasma spraying using a blended YSZ and LCO powders, and the stability of the LCO/YSZ interface exposed to a high temperature was investigated. The LCO/YSZ deposits were exposed at 1300 °C for different durations. The microstructure evolution at the LCO/YSZ interface was investigated by quasi-in-situ scanning electron microscopy assisted by X-ray energy-dispersive spectrum analyses and X-ray diffraction measurements. At an exposure temperature of 1300 °C, the grain morphology of LCO splats in contact with YSZ splats changed from columnar grains to quasi-axial grains with interface healing, and some grains tended to disappear during the thermal exposure. The results indicate that the phases in LCO–YSZ composite coating are not stable at 1300 °C. The element La in the LCO splat diffused towards the adjacent YSZ splat during the exposure, generating the reaction product layers composed of La2Zr2O7 between the LCO and YSZ splats. After exposed for 200 h, the composite coating consisted of a mixture of mainly La2Zr2O7 and CeO2 and a minor amount of YSZ, accounting for the unusual decrease in the thermal conductivity at the late stage of exposure.  相似文献   

9.
《Ceramics International》2017,43(15):11885-11897
In the present study, HA–YSZ nanostructured composites were deposited on Ti–6Al–4 V substrates by electrophoretic deposition of suspensions containing 0, 10, 20 and 40 wt% YSZ. The stability of each suspension was determined by applying response surface methodology, DLVO theory and zeta potential measurement for different YSZ contents and dispersant concentrations. The maximum zeta potential and electromobility of suspended particles was obtained for the suspension with 20 wt% YSZ. The electrophoretic deposition of HA–YSZ nanostructured composites was carried out at a constant voltage of 20 V for 120 s. The deposition kinetics was studied based on a mass-charge correlating approach under ranges of voltage (20–60 V), time (30–300 s) and wt% YSZ (0–40). The as–deposited and sintered HA–YSZ coatings were characterized by SEM, XRD, DSC–TG and FT–IR analyses. The micro-scratch behavior of coated samples indicated the highest critical contact pressures of crack initiation, Pc1 = 4.50 GPa, crack delamination, Pc2 = 5.14 GPa and fracture toughness, KIC = 0.622 MPa m1/2 for HA-20 wt% YSZ sample. The results of potentiodynamic polarization measurements showed that the implementation of 20 wt% YSZ could efficiently decrease the corrosion current density and corrosion rate of coated samples, while corrosion potential and linear polarization resistance were increased.  相似文献   

10.
《Ceramics International》2016,42(15):16822-16832
High-temperature stability of SPS YSZ coatings with the columnar and deep vertically cracked (DVC) structures and their corrosion resistance to 56 wt% V2O5+44 wt% Na2SO4 molten salt mixture were investigated. Both the columnar and DVC-structured YSZ coatings were sintered at 1000 °C, but a significant increase in porosity in combination with significant reductions in Vickers’ hardness and Young's modulus were observed at the temperatures from 1200 °C to 1400 °C. The DVC-structured YSZ coating exhibited superior corrosion resistance against the molten salt mixture attack to the columnar-structured one due to its higher density behaving as a sealing protective top layer at 950 °C.  相似文献   

11.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

12.
《Ceramics International》2016,42(3):3849-3854
The effects of the addition of BaO on the sinterability, phase balance, microstructure, and mechanical properties of 8 mol% yttria-stabilized cubic zirconia (8YSZ) were investigated using scanning electron microscopy, X-ray diffraction (XRD) analyses, and micro-hardness testing. The 8YSZ powder was doped with 0–15 wt% BaO using a colloidal process. The undoped and BaO-doped 8YSZ specimens were sintered at 1550 °C for 1 h. The XRD analyses results showed that the specimens doped with up to 1 wt% BaO did not exhibit BaO-related peaks, indicating that BaO was completely solubilized in the 8YSZ matrix. However, when more than 1 wt% BaO was added, BaZrO3-related peaks appeared, suggesting that the overdoped BaO did not dissolve in the 8YSZ matrix but formed a secondary phase of BaZrO3 at high temperatures. Grain size measurements showed that the grain size of 8YSZ decreased with an increase in the amount of BaO added. The decrease in the grain size was owing to the fact that the grains of BaZrO3, which precipitated at the grain boundaries and grain junctions of 8YSZ, increased the grain boundary cohesive resistance because of the pinning effect. This resulted in a decrease in the grain boundary mobility, and an increase in the grain boundary energy. Furthermore, while the addition of BaO to 8YSZ caused a slight decrease in the hardness of 8YSZ, the fracture toughness of 8YSZ increased from 1.64 MPa m1/2 to 2.08 MPa m1/2, owing to the resulting decrease in the grain size.  相似文献   

13.
《Ceramics International》2016,42(9):11201-11208
In this research, biphasic calcium phosphate (BCP), comprising 70 wt% of beta tricalcium phosphate and 30 wt% of hydroxyapatite, was mixed with different amounts of 3 mol% yttria-stabilized zirconia (3YSZ) and sintered at 1200 °C to produce toughened bone substitutes. The fracture toughness (KIc) of the obtained bodies was determined using the indentation-strength fracture method. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis were utilized to study the microstructure of the samples. The phase composition of the samples was also determined using X-ray diffraction technique. In order to investigate the cell supporting ability of the samples, G-292 cells were cultured on them and cell morphology was evaluated after 48 h. Based on the results, the maximum fracture toughness and compressive strength values (i.e., 2.11 MPa m0.5 and 150 MPa, respectively) were obtained for the sample containing 3 vol% of 3YSZ. The obtained fracture toughness value was approximately two times higher than that of the original BCP (1.07 MPa m0.5) and also was comparable with that of the cortical human bone. The following mechanisms for the improved KIc of the β-tricalcium phosphate were determined: Grain bridging of 3YSZ particles during crack growth resistance, formation of microcracks on the tip of the larger cracks, absorbing crack extension energy due to the volume expansion during 3YSZ tetragonal-monoclinic transformation and crack deflection by the presence of 3YSZ particles. Also, 3YSZ additive encourages transformation of HA phase into β-TCP during sintering BCP. Finally, based on the cell studies, the samples exhibited an adequate cell attachment and a good cell spreading condition.  相似文献   

14.
This paper compares the hot corrosion performance of yttria stabilized zirconia (YSZ), Gd2Zr2O7, and YSZ + Gd2Zr2O7 composite coatings in the presence of molten mixture of Na2SO4 + V2O5 at 1050 °C. These YSZ and rare earth zirconate coatings were prepared by atmospheric plasma spray (APS). Chemical interaction is found to be the major corrosive mechanism for the deterioration of these coatings. Characterizations using X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate that in the case of YSZ, the reaction between NaVO3 and Y2O3 produces YVO4 and leads to the transformation of tetragonal ZrO2 to monoclinic ZrO2. For the Gd2Zr2O7 + YSZ composite coating, by the formation of GdVO4, the amount of YVO4 formed on the YSZ + Gd2Zr2O7 composite coating is significantly reduced. Molten salt also reacts with Gd2Zr2O7 to form GdVO4. Under a temperature of 1050 °C, Gd2Zr2O7 based coatings are more stable, both thermally and chemically, than YSZ, and exhibit a better hot corrosion resistance.  相似文献   

15.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

16.
《Ceramics International》2016,42(7):8559-8564
In this work NiO/3 mol% Y2O3–ZrO2 (3YSZ) and NiO/8 mol% Y2O3–ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni–8YSZ the porosity and shrinkage of Ni–3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni–3YSZ and Ni–8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67 W cm−2 at 800 °C, respectively. Furthermore, in order to improve the cell performance, a Ni–8YSZ anode functional layer was added between the electrolyte and Ni–YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73 W cm−2 were achieved at 800 °C for single cells with Ni–3YSZ and Ni–8YSZ hollow fibers, respectively.  相似文献   

17.
Bulk and grain boundary diffusion of Nb5+ cations in yttria-stabilized zirconia (YSZ, 8 mol% Y2O3–92 mol% ZrO2) and in titania-doped yttria-stabilized zirconia (Ti–YSZ, 5 mol% TiO2–8 mol% Y2O3–87 mol% ZrO2) was studied in air in the temperature range from 900 to 1300 °C. Experiments were performed in the B-type kinetic region. Diffusion profiles were determined using the secondary ion mass spectrometry (SIMS). The temperature dependencies of the bulk diffusion coefficient D and the grain boundary diffusion parameter Dδs for both the materials were calculated. The activation energies of these transport processes in YSZ amounts to 258 and 226 kJ mol−1, respectively, and 232 and 114 kJ mol−1 in Ti–YSZ. The results were compared to the diffusion data of other cations previously obtained for the same material.  相似文献   

18.
《Ceramics International》2020,46(17):26841-26853
To study the impact of rare earth oxide doping on the thermal failure of thermal barrier coatings, 0.5 mol%, 1.0 mol% and 1.5 mol% Nd2O3-doped YSZ coatings were prepared by explosive spraying. SEM, XRD, EDS and microhardness testing were used to analyse the effect of different rare earth oxide doping contents on the morphology, composition and mechanical properties of the coatings. With an increase in the Nd2O3 doping content, the porosity of the coatings was reduced. The decrease in the porosity increased the compactness of the coatings and improved the microhardness and fracture toughness. The bonding strength and thermal shock resistance of the coatings were the highest among the samples herein when the rare earth doping content was 1.0 mol%, and the values were 37.6 MPa and 200 times, respectively. The thermal shock failure mode of the coating was mainly due to the exfoliation of the inner layer of the ceramic layer. The luminous intensity of the coating increased with increasing rare earth oxide doping content, and the emission spectrum of the Nd2O3-modified YSZ coating after the thermal shock test produced a new emission peak at 594 nm, which decreased at 708 nm.  相似文献   

19.
Yttria-stabilised zirconia (Y-TZP) based composites with a tungsten carbide (WC) content up to 50 vol.% were prepared from nanopowders by means of conventional hot pressing. The mechanical properties were investigated as a function of the WC content. The hardness increased from 12.3 GPa for pure Y-TZP up to 16.4 GPa for the composite with 50 vol.% WC, whereas the bending strength reached a maximum of 1551 MPa for the 20 vol.% WC composite. The toughness of the composites could be optimised by judicious adjustment of the overall yttria content by mixing monoclinic and 3 mol% Y2O3 co-precipitated ZrO2 starting powders. An optimum fracture toughness of 9 MPa m1/2 was obtained for a 40% WC composite with an overall yttria content of 2 mol%. The hardness, strength as well as fracture toughness of the ultrafine grained composites with a nanosized WC source was significantly higher than with micron-sized WC. The experimentally measured contribution of the different observed toughening mechanisms was evaluated as a function of the WC content. Transformation toughening was found to be the major toughening mechanism in ZrO2–WC composites with up to 30 vol.% WC, whereas the contribution of crack deflection and bridging is significant at a secondary phase content above 30 vol.%.  相似文献   

20.
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号