首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The demand for protective measures for structures is on the rise due to the increasing possibility of structural damage due to threats such as natural disasters, collision of vehicles, and blast and ballistic impacts. Application of an elastomer as a composite material with other base materials such as aluminium, steel and concrete has been considered as one of the measures to mitigate such threats. However, very limited work has been conducted in this area, especially on the feasibility of polyurea (elastomer) as a composite material against low velocity impacts. The focus of this research is to investigate the behaviour of polyurea coated composite aluminium plates subjected to rigid blunt-nosed projectile impact. AA5083-H116 aluminium alloy plates with polyurea coatings of 6 mm and 12 mm thickness were investigated. A blunt cylindrical projectile of high strength steel travelling in the velocity range of 5–15 m/s impacted at the centre of the 300 mm × 300 mm square plates. A polyurea coating was used to absorb part of the impact energy and provide protection to the plates as an energy damping material through application on the impact side of the plates. In addition, uncoated aluminium plates of the same thickness were used in the test program. A gas gun mechanism was used to fire a 5 kg projectile, and laser displacement monitoring equipment was used to record the out-of-plane deformation history of the plate during the impact. The complete test setup has been modelled numerically using the advanced finite element (FE) code LS-DYNA. The models were validated with the experimental results. Deformation time histories obtained from both the experimental and numerical studies for the plates were used to compare the ability of polyurea to effectively mitigate the damage resulting from low velocity impact. The polyurea coated plates showed a considerable reduction in out-of-plane deformation when compared to the uncoated plates. These findings indicate that polyurea can be utilised as an efficient energy absorbing/damping material against low velocity impact damage.  相似文献   

2.
A solution methodology to predict the residual velocity of a hemispherical-nose cylindrical projectile impacting a composite sandwich panel at high velocity is presented. The term high velocity impact is used to describe impact scenarios where the projectile perforates the panel and exits with a residual velocity. The solution is derived from a wave propagation model involving deformation and failure of facesheets, through-thickness propagation of shock waves in the core, and through-thickness core shear failure. Equations of motion for the projectile and effective masses of the facesheets and core as the shock waves travel through sandwich panel are derived using Lagrangian mechanics. The analytical approach is mechanistic involving no detail account of progressive damage due to delamination and debonding but changes in the load-bearing resistance of the sandwich panel due to failure and complete loss of resistance from the facesheets and core during projectile penetration. The predicted transient deflection and velocity of the projectile and sandwich panel compared fairly well with results from finite element analysis. Analytical predictions of the projectile residual velocities were also found to be in good agreement with experimental data.  相似文献   

3.
In this paper, a new analytical model for behavior of carbon nanotubes reinforced composite plates under low velocity impact has been presented. Nanotubes aligned, straight and randomly oriented are distributed on rectangular simply supported composite plate. The Mori–Tanaka model is used to obtain effective mechanical properties of composites reinforced with nanotubes consisting of aligned, straight and randomly oriented carbon nanotubes embedded in a polymer matrix. The analytical model based on the first-order shear deformation theory and spring-mass model. The results of analytical model are compared with the results of low velocity impact on fiber-reinforced polymer composites. The results show that the deflection and energy absorption of plate in a randomly oriented distribution is more than aligned straight of carbon nanotubes in the composite layers.  相似文献   

4.
Steel fibre reinforced cementitious composite (SFRCC) panels are numerically investigated for their performances under high velocity impact of short projectiles. Numerical responses are obtained using advanced constitutive material model of Riedel–Hiermaier–Thoma (RHT) for cementitious materials and adopting appropriate modelling techniques. Effects of steel fibre volume and the thickness of panels on the impact performance are mainly highlighted in this paper. Various characteristics phenomenon during impact on cementitious composite panels namely, spalling, cracking, scabbing and perforation, are captured which is a difficult task. Scabbing is likely to occur when tensile stresses at the back face of the panel exceed dynamic tensile strength of the material. Various critical aspects in numerical modelling like boundary conditions, material input parameters, and handling severe distortion of the Lagrangian based finite elements are appropriately explained. Design chart is also developed to determine optimum fibre volume and thickness for an impact energy level up to 2.2 kJ. The numerically predicted impact responses are found to corroborate well with experimental results.  相似文献   

5.
The stress–strain behaviour of the aluminium alloy 7075 in T651 temper is characterized by tension and compression tests. The material was delivered as rolled plates of thickness 20 mm. Quasi-static tension tests are carried out in three in-plane directions to characterize the plastic anisotropy of the material, while the quasi-static compression tests are done in the through-thickness direction. Dynamic tensile tests are performed in a split Hopkinson tension bar to evaluate the strain-rate sensitivity of the material. Notched tensile tests are conducted to study the influence of stress triaxiality on the ductility of the material. Based on the material tests, a thermoelastic–thermoviscoplastic constitutive model and a ductile fracture criterion are determined for AA7075-T651. Plate impact tests using 20 mm diameter, 197 g mass hardened steel projectiles with blunt and ogival nose shapes are carried out in a compressed gas-gun to reveal the alloy's resistance to ballistic impact, and both the ballistic limit velocities and the initial versus residual velocity curves are obtained. It is found that the alloy is rather brittle during impact, and severe fragmentation and delamination of the target in the impact zone are detected. All impact tests are analysed using the explicit solver of the non-linear finite element code LS-DYNA. Simulations are run with both axisymmetric and solid elements. The failure modes are seen to be reasonably well captured in the simulations, while some deviations occur between the numerical and experimental ballistic limit velocities. The latter is ascribed to the observed fragmentation and delamination of the target which are difficult to model accurately in the finite element simulations.  相似文献   

6.
复合材料层合板低速冲击的接触力和能量响应仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
以连续介质损伤力学(CDM)为基础,提出了一个有效的数值分析模型来模拟碳纤维增强复合材料(CFRP)层合板低速冲击的接触力响应和能量响应。该模型考虑了不同的失效模式,引入了不可逆的损伤变量和新的刚度折减方式以考虑损伤造成的刚度变化,定义了耗散能的计算方式以考虑损伤造成的能量变化。通过在Abaqus/Explicit平台上编写VUMAT子程序具体实现模型,数值仿真与试验结果吻合较好,验证了该模型的有效性。此外,还综合考虑了Hashin准则与LaRC04准则各自的优缺点,用Hashin和LaRC04相混合得到的准则对低速冲击进行了模拟。结果表明:在冲击外载作用下当CFRP层合板中存在较多基体压缩失效时,采用混合的失效准则模拟得到的接触力响应和能量响应结果更接近试验结果,而使用纯Hashin准则得到的预测结果偏保守。  相似文献   

7.
This paper presents results of an experimental investigation on the impact response of repaired and unrepaired glass/epoxy composite plates. Repaired samples were prepared by two different manufacturing methods; vacuum assisted resin infusion process and hand lay-up technique. In order to compare impact response of the repaired and unrepaired samples a number of single impact tests were performed under various impact energies. Damage process of the samples is analyzed from cross-examining load–deflection curves and damaged specimens. From the visual inspection, for the impacted side of the samples, it is noted that the main damage modes for repaired samples are matrix and fiber cracks around point of impact and delaminations while severe matrix cracks expanded through fiber directions are the dominant damage mode for unrepaired samples. At the back surfaces, delaminations and fiber–matrix debonding oriented in the fiber directions are observed for unrepaired samples. However, for repaired samples the fiber fractures through repair line as well as the delaminations become dominant modes. For a reasoning justification in discussing impact test results, interlaminar fracture toughness (Mode I and Mode II) and flexural tests for repaired and non-repaired samples were also conducted.  相似文献   

8.
The low velocity impact behavior of three layer thermoplastic laminates consisting of woven glass fiber and polypropylene has been investigated for two different fiber volume configurations. Panels with configurations of 50/50 and 20/80 in the warp and fill directions were subjected to low velocity impact energies between 4 and 16 J using an instrumented dropping weight impact tower. Load vs. displacement plots showed the excellent energy absorbing capabilities exhibited by the woven composites. Both configurations dissipated approximately 75% of the 16 J incident impact energy. An energy-balance model was used to successfully predict the impact response of the woven thermoplastic composites. The impact damaged plates were tested under four point bend (4 PB) loading conditions. Results showed a reduction in flexural strength and modulus as the impact energy increased. A simple compression molding damage repair process was applied to the 16 J impacted composite plates. 4 PB testing of the repaired samples revealed a significant recovery in the flexural strength and modulus of the thermoplastic woven composite with both fiber configurations.  相似文献   

9.
10.
In this paper, some of the important defeating mechanisms of the high hardness perforated plates against 7.62 × 54 armor piercing ammunition were investigated. The experimental and numerical results identified three defeating mechanisms effective on perforated armor plates which are the asymmetric forces deviates the bullet from its incident trajectory, the bullet core fracture and the bullet core nose erosion. The initial tests were performed on the monolithic armor plates of 9 and 20 mm thickness to verify the fidelity of the simulation and material model parameters. The stochastic nature of the ballistic tests on perforated armor plates was analyzed based on the bullet impact zone with respect to holes. Various scenarios including without and with bullet failure models were further investigated to determine the mechanisms of the bullet failure. The agreement between numerical and experimental results had significantly increased with including the bullet failure criterion and the bullet nose erosion threshold into the simulation. As shown in results, good agreement between Ls-Dyna simulations and experimental data was achieved and the defeating mechanism of perforated plates was clearly demonstrated.  相似文献   

11.
Ik Hyeon Choi   《Composite Structures》2006,75(1-4):582-586
Usually the modified Hertzian contact law or experimental static indentation law has been used to analyze low-velocity impact response of composite laminates. In composite laminated plates subjected to low-velocity impact, usually indentation by impact is very small and also energy absorption by indentation is negligible, so ‘spring element method’, which proposed by author recently, can be well applied to investigate impact response. In the present study ‘lumped mass method’ also had been proposed by author to approximately calculate contact force history of composite laminates will be conceptually described as well as the spring element method. And it will be discussed that how the spring element method can be applied to composite sandwich plates. Finally numerical results easily obtained from finite element analysis based on the spring element method using general-purpose commercial FEM software is compared with experimental results. The comparison shows overall agreement.  相似文献   

12.
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load–time histories, displacement–time histories and energy–time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill’s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS™, in order to simulate the failure mechanisms under indentation tests.  相似文献   

13.
This paper investigates the energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact. The design of the sustainable concrete mixtures aims on achieving a densely compacted cementitious matrix with a relatively low binder amount, employing the modified Andreasen & Andersen particle packing model. The experiments on UHPFRC are performed using a 4-point bending test and high velocity projectile impact tests. The obtained results show that although the utilization of hybrid steel fibre enhances the mechanical properties of the developed UHPFRC, the application of fibres with hooked ends is crucial in improving the energy absorption capacity of the sustainable UHPFRC in quasi-static mode. However, under high velocity projectile impact, the UHPFRC mixture with hybrid fibres shows a much better energy absorption capacity than the one with hooked steel fibres only, particularly in resisting the scabbing at the rear surface. The intrinsic mechanisms for the energy absorption capacity of the sustainable UHPFRC in quasi-static mode and under high velocity projectile impact are studied and analysed.  相似文献   

14.
The paper presents an approach to the problem of optimum design of composite plates subjected to low velocity impact. The deflections and stresses are reduced by employing prestrained shape memory alloy (SMA) fibers which are in the martensitic phase when embedded within the plate. At an elevated temperature, the SMA fibers transform into the austenitic phase and tend to contract. However, due to a constraint, the contraction is either completely prevented or reduced resulting in significant tensile recovery stresses. This tension reduces deformations and stresses in the plate subjected to low-velocity impact.The solution in the paper addresses an impact of cross-ply plates with SMA fibers embedded within the layers oriented in both directions. An approach to optimization considered in the paper involves variations of the volume fractions of SMA fibers in each direction subject to a constraint on the total volume of the shape memory alloy. It is shown that an application of SMA fibers can significantly reduce deflections and stresses. A further benefit can be achieved by an optimization of a distribution of volume fractions of SMA fibers between the layers.  相似文献   

15.
A discrete model for a reinforced rubber-like material is proposed in order to simulate numerically a debris tyre impact on a typical structure of an aircraft when using the FE code LS-DYNA. The model is calibrated using the static and dynamic test data for the actual tyre material.  相似文献   

16.
Experiments and numerical simulations on the dynamic behavior of free–free aluminum beams subjected to high velocity transverse impact were performed using single-stage light gas gun and nonlinear finite element program, LS-DYNA. A cylindrical free–free beam with a diameter of 30 mm is impacted symmetrically and asymmetrically by a cylindrical aluminum projectile with a diameter of 10 mm in the present experiment. The lengths of the beam and projectile are 150 mm and 20 mm, respectively. It is shown that the responses of free–free beam include elastic–plastic deformation, structural failure and fragmentation. The number of fragments, the local deformation and the mass dissipation of the free–free beam increase linearly with the increase of the initial impact velocity of the projectile. However, the non-dimensional velocity at the central point of the free–free beam decreases with the increase of the initial impact velocity of the projectile and is independent of the impact location. It is found that the dependence of the kinetic energy of the free–free beam on the impact velocity of the projectile is similar to the dependence of the maximum velocity at the central point of the beam on the impact velocity of the projectile. Energy partitions are further predicted. For example, when impact velocity is 400 m/s, the ratio of kinetic energy of the beam to impact energy is 3.3 J while the ratios due to plastic energy dissipation and fragmentation are 15 J and 54% respectively. The rest remains in projectile. It is found that the energy partitions in high velocity impact case are nearly independent of impact location, which is different from those subjected to low velocity impact.  相似文献   

17.
In this paper a study is presented on the experimental and numerical analysis of the failure process of mild steel sheets subjected to normal impact by hemispherical projectiles. The experiments have been performed using a direct impact technique based on Hopkinson tube as a force measurement device. The tests covered a wide range of impact velocities. Both lubricated and dry conditions between specimen and projectile have been applied. Different failure modes for each case were found. For lubricated conditions a petalling was observed, whereas for dry conditions a radial neck along with a hole enlargement reduces the formation of petalling. The perforation process has been simulated by the application of 3D analysis using ABAQUS/Explicit FE code. The material behavior of the circular specimen was approximated by three different constitutive relations. The main task was to study the influence of the material definition on the response of the sheet specimen with special attention to the failure mode.  相似文献   

18.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

19.
Experimental investigation of repeated impacts on aluminium plates is performed using drop weights impacting from either constant or variable heights. In repeated impacts of constant and variable heights, the effect of plasticity is noticeable on the specimens in the very first impact. The effect of strain hardening is observed at higher impact numbers. Stiffness of plates is decreased by initiation and propagation of cracks in the specimens. Finally, perforation and penetration occur at the ultimate consecutive impacts. Numerical simulations of repeated impacts are also conducted using continuum damage mechanics by Abaqus software. Lemaitre's model is used as the damage model, and the code is written in Vumat subroutine. The effect of initial uniaxial and biaxial tensile stress on the plates is considered in repeated impacts, and it is concluded that plates with initial tensile uniaxial stress at transverse edges have maximum values of contact force and absorbed energy.  相似文献   

20.
The effects of shape memory alloy thin films embedded in composite plates for improving damage resistance of composite structures under low velocity impact were investigated numerically. Analysis model for SMA thin film was developed based on Lagoudas’ model and implemented using the user defined material subroutine of the ABAQUS/Explicit finite element program. Composite damage model based on the Chang–Chang failure criteria was also implemented to consider progressive damage behavior. The finite element simulation of low velocity impact behavior of a shape memory alloy hybrid composite plate was performed using the ABAQUS/Explicit program. Parametric studies were performed to investigate the effect of shape memory alloys for improving damage resistance of composite plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号