首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

2.
Transparent TiO2 thin film photocatalysts were prepared on transparent porous Vycor glass (PVG) by an ionized cluster beam (ICB) method. The UV‐VIS absorption spectra of these films show specific interference fringes, indicating that uniform and transparent TiO2 thin films are formed. The results of XRD measurements indicate that these TiO2 thin films consist of both anatase and rutile structures. UV light (λ > 270 nm) irradiation of these TiO2 thin films in the presence of NO led to the photocatalytic decomposition of NO into N2, O2 and N2O. The reactivity of these TiO2 thin films for the photocatalytic decomposition of NO is strongly dependent on the film thickness, i.e., the thinner the TiO2 thin films, the higher the reactivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Conducting polypyrrole (PPy) thin-film electrodes were prepared by the electropolymerization of pyrrole on gold-coated glass plates. Films of various roughnesses were obtained by the variation of the scan rates during electropolymerization. These thin films were modified by doping with 6mM of the dopant NiCl2. The surface morphology of the films was studied by scanning electron microscopy and atomic force microscopy (AFM), which suggested films prepared with a high scan rate were rougher in nature than the films produced with a low scan rate. The electrocatalytic reduction of nitrobenzene was carried out with these electrodes with the cyclic voltammetry technique in acetonitrile containing 0.1M HClO4 as a supporting electrolyte. The various results obtained show that the conducting PPy thin-film electrodes were catalytically active toward the electroreduction process. The modified PPy film electrodes doped with NiCl2 were more active toward nitrobenzene electroreduction than the PPy film alone. The results indicate that the roughness of the films played a very important role in determining their catalytic activity. The PPy films that were more rough in nature were catalytically more active than the smooth films; this may have been due to the availability of more reactive sites in the case of rough films. The apparent diffusion coefficients of the PPy film electrodes were also calculated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
《Ceramics International》2023,49(2):1678-1689
Undoped and metal doped nanocrystalline TiO2 transparent thin films were synthesized on glass substrates via sol-gel/dip-coating method. TiO2 thin film coatings can be applied to the surfaces of solar panels to impart self-cleaning properties to them. The structural and optical properties of few nanometer-thick films were characterized by XRD, SEM, CA, AFM, XPS, and UV–Vis spectrophotometry techniques. The stoichiometric TiO2 films crystallized in anatase phase, with a particle size of ~100 nm, which were uniformly distributed on the surface. The prepared films with a roughness of ~1–5 nm, increased the hydrophilicity of the glass surface. Reducing the amount of Ti precursor (X) favored the improvement of film quality. To improve the photocatalytic activity of the TiO2 thin film, it was doped with Ni, Cd, Mo, Bi and Sr metal ions. The effect of metal doping on the photocatalytic activity of the films was investigated using the degradation process of methylene blue (MB) dye as the model contaminant. Among the prepared coatings, the Sr–TiO2 film showed the highest efficiency for MB degradation. It increased the dye degradation efficiency of the films under both UV and Vis lights. The kinetic investigations also showed that the degradation of MB by TiO2 and M ? TiO2 films obeyed the pseudo-first order kinetics.  相似文献   

5.
To reduce power consumption of transparent oxide‐semiconductor thin film transistors, a gate dielectric material with high dielectric constant and low leakage current density is favorable. According to previous study, the bulk TiNb2O7 with outstanding dielectric properties may have an interest in its thin‐film form. The optical, chemical states and surface morphology of sol‐gel derived TiNb2O7 (TNO) thin films are investigated the effect of postannealing temperature lower than 500°C, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non‐lattice oxygen in the TNO film is proposed. The peak area ratio of non‐lattice oxygen plays an important role in the control of leakage current density of MIM capacitors. Also, the capacitance density and dissipation factor were affected by the indium tin oxide (ITO) sheet resistance at high frequencies. The sample after postannealing at 300°C and electrode‐annealing at 150°C possesses a high dielectric constant (>30 at 1 MHz) and a low leakage current density (<1 × 10?6 A/cm2 at 1 V), which makes it a very promising gate dielectric material for transparent oxide‐semiconductor thin film transistors.  相似文献   

6.
Single-walled nanotubes (SWNTs), thin multiwalled carbon nanotubes (t-MWNTs) and multiwalled carbon nanotubes (MWNTs) were treated with H2SO4–HNO3 acid solution, under different chemical conditions. The acid-treated CNTs were dispersed in DI water and in poly (3,4-ethylenedioxythiophene) (PEDOT) solution. Furthermore, the finely dispersed CNTs/PEDOT solutions were employed to a simple method of bar coating to obtain the transparent conductive films on the glass and polyethylene terephthalate (PET) film. A sheet resistance of 247 Ω/sq and a transmission of 84.7% were obtained at a concentration of the acid-treated CNTs of 0.01 wt.%.  相似文献   

7.
Multiple‐wavelength interferometry (MWI), a new optical method for the thermal probing of thin polymer films, is introduced and explored. MWI is compared with two standard optical methods, single‐wavelength interferometry and spectroscopic ellipsometry, with regard to the detection of the glass transition temperature (Tg) of thin supported polymer films. Poly(methyl methacrylate) films are deposited by spin coating on Si and SiO2 substrates. MWI is also applied to the study of the effect of film thickness (25–600 nm) and polymer molecular weight (1.5 × 104 to 106) on Tg, the effect of film thickness on the coefficients of thermal expansion both below and above Tg, and the effect of deep UV exposure time on the thermal properties (glass transition and degradation temperatures) of the films. This further exploration of the MWI method provides substantial insights about intricate issues pertinent to the thermal behavior of thin polymer films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4764–4774, 2006  相似文献   

8.
Thin films durability is critical to retain its performance in real life applications. For automotive glass, further factors such as haze appearance developed under abrasive conditions become relevant to ensure the driver's visibility. Macroscopic abrasion resistance tests of TiO2/SiO2 and SiO2–TiO2/SiO2 thin films on soda‐lime silica (SLS) glass were performed according to an American standard for safety grazing. The purpose of this, was to increase the top active film durability in a bilayer system by understanding how film thickness and top film composition influence abrasion performance. In order to achieve this understanding, three approaches were considered: (a) determination of the influence of TiO2 top film thickness, (b) replacement of the TiO2 top film by SiO2–TiO2 films, and (c) determination of the influence of SiO2–TiO2 film thickness. Results showed that thinner top TiO2 film thickness leads to SiO2/TiO2 bilayers with lower haze value and improved abrasion resistance. It was also found that SiO2 addition to TiO2 top film composition promotes the thin film adhesion and sample durability against abrasive wear. Friction coefficient and micro‐hardness measurements support the abrasion results. Factors contributing to the improvement of the lifetime performance of TiO2 and SiO2–TiO2 thin films were identified.  相似文献   

9.
Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy. The antibacterial activities of the composite films were studied by a fluorescence label method using Escherichia coli (E. coli) as a model. The as-prepared mesoporous TiO2 films showed much higher antimicrobial efficiency than that of glass and commercial P25 TiO2 spinning film. The facts would result from the high surface area, small crystal size and more active sites for the mesoporous catalysis. After the doping of Ag, a significant improvement for the antimicrobial ability was obtained. To elucidate the roles of the membrane photocatalyst and the doped silver in the antimicrobial activity, cells from a silver-resistant E. coli were used. These results indicated that Ag nanoparticles in the mesoporous were not only an antimicrobial but also an intensifier for photocatalysis. The as-prepared mesoporous composite film is promising in application of photocatalysis, antimicrobial and self-clean technologies.  相似文献   

10.
Two different Ti-containing porous silica thin films having a hexagonal and cubic pore structure were synthesized and used as photocatalysts for the reduction of CO2 with H2O at 323 K. UV irradiation of the Ti-containing porous silica thin films in the presence of CO2 and H2O led to the formation of CH4 and CH3OH with a high quantum yield of 0.28%. These porous silica thin film photocatalysts having a hexagonal pore structure exhibited higher reactivity than the Ti-MCM-41 powder photocatalysts with the same pore structure.  相似文献   

11.
A LiPON–WO3 composite thin film (LPWON) was evaluated for use as a solid electrolyte in solid state electrochromic (EC) devices. LiPO4 and a WO3 (2 wt%) composite sputtering target was synthesized by a ball milling process. The LPWON thin films were deposited by RF magnetron sputtering in Ar + N2 and N2 atmospheres. The structural, electrochemical, and optical properties of the LPWON electrolytes were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, and an impedance analyzer. EC mirrors with WO3 (coloring layer), LPWON (solid electrolyte), and stainless steel (mirror electrode) on ITO (transparent electrode) glass were fabricated to analyze the improved EC properties due to the LPWON electrolyte. The LPWON may lead to electrolytes with more stable potential cycle properties.  相似文献   

12.
To prepare hard and transparent poly (methyl methacrylate)‐silica coat film on glass or polycarbonate substrates, poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) random copolymers and perhydropolysilazane (PHPS) were blended in solution. Then the solution was cast on the substrates. The grafting of PHPS onto 2‐hydroxyethyl methacrylate unit was analyzed by 1H NMR spectroscopy. Surface hardness and transparency of the coat film were measured by nano‐indentation method and UV‐Vis spectroscopy, respectively. Surface hardness of coat film depended on the volume fraction of silica in the coat film, and reached 2.7 GPa when the volume fraction of silica was 76.4%. Transparency of the coat films prepared with PHPS was almost 100%, indicating that the coat film prepared with PHPS was highly transparent not only on glass substrate but also on the polycarbonate substrate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
The transparent Ti-containing mesoporous silica thin films can be prepared on quartz plate using a spin-coating sol–gel method. The spectroscopic characterization has revealed that the Ti-containing mesoporous silica thin films contain isolated and tetrahedrally-coordinated titanium oxide moieties in the frameworks. Compared with the common mesoporous silica thin films, these Ti-containing mesoporous silica thin films have demonstrated a strong hydrophilic surface property even before UV-irradiation. After UV-light irradiation, the contact angle of water droplet on the Ti-containing mesoporous silica thin films became lower, indicating the appearance of the super-hydrophilic property. Under UV-light irradiation Ti-containing mesoporous silica thin films also exhibited highly selective activity for the photocatalytic oxidation of propylene. The isolated and tetrahedrally-coordinated titanium oxide moieties are responsible for these photo-induced surface reactions.  相似文献   

14.
The Cu2ZnSnS4 (CZTS) thin films have been electrodeposited onto the Mo coated and ITO glass substrates, in potentiostatic mode at room temperature. The deposition mechanism of the CZTS thin film has been studied using electrochemical techniques like cyclic voltammetery. For the synthesis of these CZTS films, tri-sodium citrate and tartaric acid were used as complexing agents in precursor solution. The structural, morphological, compositional, and optical properties of the CZTS thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and optical absorption techniques respectively. These properties are found to be strongly dependent on the post-annealing treatment. The polycrystalline CZTS thin films with kieserite crystal structure have been obtained after annealing as-deposited thin films at 550 in Ar atmosphere for 1 h. The electrosynthesized CZTS film exhibits a quite smooth, uniform and dense topography. EDAX study reveals that the deposited thin films are nearly stoichiometric. The direct band gap energy for the CZTS thin films is found to be about 1.50 eV. The photoelectrochemical (PEC) characterization showed that the annealed CZTS thin films are photoactive.  相似文献   

15.
In this study, the production, microstructural characterization and optical properties evaluation of heterostructured NiO-TiO2 films were performed. The film is intended to be used in solar cell applications. Ni-P electroless film was made on an AA7050 aluminum alloy. The film was black nickel electrodeposited by diluted nitric acid and then a thin TiO2 layer coating was deposited by Sol-gel process. The microstructure of the film was analyzed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) detector. X-ray diffraction (XRD) technique was used to determine the phases formed in the heterostructured film. Optical properties of the heterostructured film were measured by UV–visible spectroscopy and photoluminescence (PL) Test. Results showed that the heterostructured NiO-TiO2 films had a cauliflower characteristic and was amorphous crystallographically. The heterostructured films also increased the absorption coefficient of the solar absorber plates up to more than 98% in the visible-ultraviolet range. Finally, it was shown that, in the infrared region, the absorption coefficient for dispersion was down to 2%.  相似文献   

16.
Transparent conductive oxide (SnO2)/organic layers/aluminum thin film sandwich structures were obtained by vacuum evaporation. The organic component was either a thin carbazole film or a bilayer. In that case, the carbazole film was deposited onto a thin insulating polymer film. The polymer used was the poly(tetrabromo‐p‐phenyleneselenide) (PBrPDSe). Photoluminescence measurements have shown that the carbazole thin films emit blue light. (I‐V) measurements have shown that the structures exhibit diode characteristics. The forward direction is obtained when the transparent conductive oxide (TCO) is positively biased. However, the reproducibility of the results obtained with a single carbazole layer is poor. It appears that the stability of the sample is improved when a thin PBrPDSe film (40 nm) is introduced between the carbazole and the SnO2. The polymer film avoids the short circuit effect. In that case, the turn‐on voltage of the diode is about 3 V, when the thickness of the carbazole film is around 250 nm and the electroluminescence appears at a voltage of about 5 V. It is shown that the thermionic effect cannot be used to explain the I‐V characteristics, which are interpreted with the help of the Fowler–Nordheim tunnel effect. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2042–2055, 2001  相似文献   

17.
Using a sol–gel/spin-coating method with organic template, the transparent mesoporous silica thin films containing chromium oxide moieties can be prepared on quartz plate. The spectroscopic characterization has revealed that these thin films contain isolated and tetrahedrally coordinated chromium oxide moieties (single-site photocatalyst) in their frameworks. Even before UV light irradiation these Cr-containing mesoporous silica (CrMS) thin films have demonstrated a hydrophilic surface property more strongly than Cr-containing non-porous silica films and mesoporous silica thin films without chromium oxide. Furthermore, the Cr-containing mesoporous silica thin films showed the super-hydrophilic property not only under UV light irradiation but also even under visible light irradiation from a fluorescent lamp. In the presence of ethylene gas, the polyethylene was successfully formed on the surface of the CrMS thin film under UV light irradiation. After the formation of polyethylene the surface property of the CrMS thin film was converted into hydrophobic while keeping its transparency. The isolated and tetrahedrally coordinated chromium oxide moieties are responsible for these photo-induced surface reactions.  相似文献   

18.
Transparent TiO2 thin film photocatalysts were prepared on transparent porous Vycor glass (PVG) by the ionized cluster beam (ICB) method. In order to improve the photocatalytic performance of these thin films under visible light irradiation, transition metal ions such as Cr and V were implanted into the deep bulk inside of the films using an advanced metal‐ion‐implantation technique. The UV‐vis absorption spectra of these metal‐ion‐implanted TiO2 thin films were found to shift smoothly toward visible light regions, its extent depending on the amount and kinds of metal ions implanted. Using these metal‐ion‐implanted TiO2 thin films as photocatalysts, the photocatalytic decomposition of NOx into N2 and O2 was successfully carried out under visible light (λ 450 nm) irradiation at 275 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
《Ceramics International》2019,45(13):16234-16243
Zn0.95Mg0.05O solutions were synthesized by the sol-gel technique using Zn and Mg-based alkoxide. The structure, microstructure, and mechanical properties of the c-axis oriented Zn0.95Mg0.05O thin films were investigated as a function of film thickness and temperature. Zn0.95Mg0.05O thin films were grown on a glass substrate using the sol-gel dip-coating method. Then, the thin films were annealed at various temperature values (500–600 °C for 30 min) under air. X-ray diffraction of the Zn0.95Mg0.05O thin films results indicated that all samples had a ZnO wurtzite structure and (002) orientation. The photoluminescence (PL) measurements revealed the near-band emission (NBE), the Zni related emission, and the excess oxygen interstitials and their complexes with zinc vacancies. The surface morphologies and microstructure of all samples were characterized by using Scanning Electron Microscope (SEM). It was observed that surface morphologies of Zn0.95Mg0.05O thin film were dense, uniform, crack free and without pinhole. Effects of film thickness and temperature on stress in Zn0.95Mg0.05O thin films were analyzed theoretically to see whether there was any crack inside of the thin films and substrate or not. It was found that the stress component values of thin films were compressive; however, for glass substrate they were tension.  相似文献   

20.
《Ceramics International》2007,33(6):1071-1074
Highly c-axis-oriented ZnO thin films were prepared on soda–lime–silica glass substrates by chemical solution deposition process using a zinc-naphthenate precursor as a starting material. In order to investigate the effect of pyrolysis temperature on properties of the films such as crystallinity, surface morphology and transmittance in visible spectra region, the precursor films were pyrolyzed at 300 °C or 500 °C, followed by final heat treatment at 600 °C. Highly transparent films in visible spectra region were obtained. The relationship between residual organics and properties of the annealed films was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号