首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi1−xBaxFeO3 (x=0.05, 0.10 and 0.15) nanoparticles were synthesized by the sol–gel method. X-ray diffraction and Raman spectroscopy results showed the presence of distorted rhombohedral structure of Bi1−xBaxFeO3 nanoparticles. Rietveld refinement and Williamson–Hall plot of the x-ray diffraction patterns showed the increase in lattice parameters, unit cell volume and the particle size. Infrared spectroscopy and Raman analysis revealed the shifting of phonon modes towards the higher wavenumber side with increasing Ba concentration. These samples exhibited the optical band gap in the visible region (2.47–2.02 eV) indicating their ability to absorb visible light. Magnetic measurement showed room temperature ferromagnetic behavior, which may be attributed to the antiferromagnetic core and the ferromagnetic surface of the nanoparticles, together with the structural distortion caused by Ba substitution. The magnetoelectric coupling was evidenced by the observation of the dielectric anomaly in the dielectric constant and the dielectric loss near antiferromagnetic Neel temperature in all the samples.  相似文献   

2.
《Ceramics International》2015,41(8):9285-9295
Rare earth Sm substituted Bi1−xSmxFeO3 with x=0, 0.025, 0.05, 0.075 and 0.10 polycrystalline ceramics were synthesized by a rapid liquid phase sintering method. The effect of varying composition of Sm substitution on the structural, dielectric, vibrational, optical and magnetic properties of doped BiFeO3 (BFO) ceramics have been investigated. X-ray diffraction patterns of the synthesized rare earth substituted multiferroic ceramics showed the pure phase formation with distorted rhombohedral structure with space group R3c. Good agreement between the observed and calculated diffraction patterns of Sm doped BFO ceramics in Rietveld refinement analysis of the X-ray diffraction patterns and Raman spectroscopy also confirmed the distorted rhombohedral perovskite structure with R3c symmetry. Dielectric measurements showed improved dielectric properties and magnetoelectric coupling around Néel temperature in all the doped samples. FTIR analysis establishes O–Fe–O and Fe–O stretching vibrations in BiFeO3 and Sm-doped BiFeO3. Photoluminescence (PL) spectra showed visible range emissions in modified BiFeO3 ceramics. The magnetic hysteresis measurements at room temperature and 5 K showed the increase in the magnetization with the increase in doping concentration of Sm which is due to the structural distortion and partial destruction of spin cycloid caused by Sm doping in BFO ceramics.  相似文献   

3.
Single-phase (Bi1−xPrx)(Fe1−xTix)O3 ceramics (x=0.03, 0.06, and 0.10 as BPFT-3, BPFT-6 and BPFT-10, respectively) were synthesized by conventional solid state reaction method. The effect of varying Pr and Ti codoping concentration on the structural, magnetic, dielectric and optical properties of the BPFT ceramics have been investigated. X-ray diffraction indicated pure rhombohedral phase formation for BPFT-3 and BPFT-6 ceramics, however, a structural phase transition from a rhombohedral to an orthorhombic phase has been observed for BPFT-10 ceramic. The maximum remnant magnetization of 0.1824 emu/g has been observed in BPFT-6. With increasing codoping concentration the room temperature dielectric measurements showed enhancement in dielectric properties with reduced dielectric loss. UV–vis diffuse reflectance spectra demonstrated the strong absorption of light in the visible region for a band gap variation 2.31–2.34 eV. Infrared spectroscopy indicated the shifting of Bi/Pr–O and Fe/Ti–O bonds vibrations and change in Fe/Ti–O bond lengths. Decrease in the conductivity on increasing Pr and Ti concentration in BFO is attributed to an enhancement in the barrier properties leading to suppression of lattice conduction path arising due to lattice distortion as confirmed from impedance analysis.  相似文献   

4.
《Ceramics International》2017,43(6):4904-4909
Zr substituted Bi0.9Dy0.1Fe1−xZrxO3 (x=0.03, 0.06 and 0.10) multiferroic ceramics were synthesized by rapid liquid phase sintering technique to improve its multiferroic properties. Rietveld structural refinement of XRD patterns and Raman spectra revealed a partial structural phase transition from rhombohedral (R3c) to biphasic structure (R3c+P4mm) on codoping. The substitution of larger ionic radii and higher valence Zr4+ ions at Fe-site leads to decrease in the grain size as a result of charge compensation at Fe site. The weak ferromagnetic behavior were observed in all samples along with maximum Mr value of 0.159 emu/g for x=0.03 concentration, which is also endorsed by second order Raman modes. The distortion in FeO6 octahedra due to Zr substitution leads to splitting of electronic bands of 3.2 eV into multiplets, which in turn reduced the optical band gap value in the range of 2.06–2.10 eV for all samples.  相似文献   

5.
Evolution of the microstructure, optical, and magnetic properties have been investigated systematically in multiferroic CuFe1-xSnxO2 (x?=?0–0.05) ceramics. Substitution of Sn4+ for Fe3+ results in expansion of CuFeO2 lattice, and reduces the density of the material, but the metal oxidation states are unchanged. Observation of the optical properties shows that the value of the direct optical band gap (Eg) decreases with increasing Sn doping level, and that the CuFe1-xSnxO2 (x?=?0–0.04) series with values >?3.1?eV. Magnetic susceptibility measurements show that Sn4+ doping decreases the Curie-Weiss temperature, i.e. weakens the strength of the antiferromagnetic interaction between high-spin Fe3+ ions, but does not affect the stability of the antiferromagnetic phase, and all samples undergo successive magnetic transitions at about TN1 =?15?K and TN2 =?11?K. However, magnetization curves show that changes occur in the magnetic interactions and both ferromagnetism and antiferromagnetism co-exist in the Sn4+-doped samples. The maximum value of the saturation magnetization of 1.8?emu·g?1 was observed for the x?=?0.03 sample in a 2.5?kOe field. The changes in the magnetic behavior are closely related to the lattice distortion and charge compensation, which are discussed in detail in this work.  相似文献   

6.
The manganese doped calcium molybdato-tungstates with the formula of Ca1-xMnx(MoO4)0.50(WO4)0.50 (x = 0.01, 0.03, 0.05, 0.10, 0.125, and 0.15) were successfully obtained by two-step synthesis using in both steps a solid state reaction route. All ceramics show scheelite-type tetragonal structure with space group I41/a. The electrical and magnetic studies within the temperature range of 2–300 K showed a weak p-type electrical conductivity and the paramagnetic state of Mn-doped ceramic materials. With increasing Mn content in samples under study, a change in the short-range interactions from ferromagnetic to antiferromagnetic as well as an increase in the orbital contribution to the magnetic moment, resulting in a strong spin-orbit coupling, were observed. The Brillouin procedure was used to estimate the Landé factor.  相似文献   

7.
《Ceramics International》2016,42(5):5650-5658
Copper substituted Fe3O4 nanoparticles (NPs) (CuxFe1−xFe2O4 (0.0≤x≤1.0)) were synthesized by polyol method and the effect of Cu2+ substitution on structural, magnetic and optical properties of Fe3O4 was investigated. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), UV–Visible spectroscopy and Vibrating sample magnetometer (VSM) were used to study the physical properties of the products. The room temperature (RT) magnetization (σH) curves revealed the superparamagnetic nature of the products. The extrapolated specific saturation magnetization (σs) decreases from 42.69 emu/g to 14.14 emu/g with increasing Cu content (x). The particle size dependent Langevin fit studies were applied to determine the magnetic particle dimensions (Dmag). The average magnetic particle diameter is about 9.89 nm. The observed magnetic moments of NPs are in range of (0.61–1.77) µB and rather less than 4 µB of bulk Fe3O4 and 1 µB of bulk CuFe2O4. Magnetic anisotropy was assigned as uniaxial and calculated effective anisotropy constants (Keff) are between 10.89×104 Erg/g and 26.95×104 Erg/g. The average value of magnetically inactive layer for CuxFe1−xFe2O4 NPs was calculated as 1.23 nm. The percent diffuse reflectance spectroscopy (DR%) and Kubelka–Munk theory were applied to determine the energy band gap (Eg) of NPs. The extrapolated optical Eg values from Tauc plots are between minimum 1.98 eV to 2.31 eV. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer splitting, quadrupole splitting and hyperfine magnetic field values on Cu+2 ion substitution have been determined. Although, the Mössbauer spectra for the sample x=0.2 and 0.8 are composed of paramagnetic doublets, ferromagnetic sextets were also formed for other products.  相似文献   

8.
《Ceramics International》2016,42(5):5921-5931
Zn0.98Mn0.02O and Zn0.98−xMn0.02SnxO (x=2% and 4%) nanoparticles have been successfully synthesized via sol–gel method. X-ray diffraction (XRD) confirmed the hexagonal wurtzite structure of the samples and also successful Sn doping without any secondary phases. The microstructure of ZnMnO was significantly altered where the morphology was turned from mixed plate-like structure to spherical like structure by Sn substitution which was confirmed by electron microscope images. The energy dispersive X-ray (EDX) analysis confirmed the presence of Sn and Mn in Zn–O nanoparticles. The observed narrowing of energy gap (red shift) from 3.85 eV (Sn=0%) to 3.66 eV (Sn=4%) was discussed based on size effect and generation of free carrier concentrations. The improved optical properties of Sn–Zn–Mn–O evidenced for developing opto-electronic devices with better conversion efficiency. The shift of lattice mode (position) around 527–548 cm−1 and the change in shape of the band demonstrated the presence of Sn in Zn–Mn–O. The decrease of UV emission intensity and increase of defect related blue and green emissions indicated the possible generation of white light sources and display devices. The superior magnetic property of Sn doped Zn0.98Mn0.02O was explained by the intrinsic exchange interaction between Zn/Mn/Sn ions through the defects induced by Sn.  相似文献   

9.
Polycrystalline BiFeO3 (BFO) and Bi0.90Gd0.10Fe1?xZrxO3 (x = 0.0–0.10; BGFZx) ceramics were synthesized by solid‐state reaction method. Rietveld analysis of X‐ray diffraction patterns showed that BFO and BGFZx = 0.0 samples are stabilized in rhombohedral structure (space group R3c), whereas a small fraction of orthorhombic phase (space group Pn21a) is observed for BGFZx = 0.03–0.10 samples. Suppression and disappearance of some Raman modes indicated a structural phase transition with addition of Zr dopant at Fe site. Magnetic measurements exhibited weak ferromagnetic behavior of BGFZx samples with increasing Zr+4 concentrations. The insertion of Gd+3 ions at Bi+3 sites and nonmagnetic Zr+4 ions at Fe+3 sites in Fe–O–Fe network suppressed the spin cycloid structure of BFO which in turn enhanced the magnetization of these ceramics. Electron spin resonance spectra revealed the breaking of spin cycloid of BFO due to the development of free spins with addition of Zr+4 dopants at Fe sites. UV–Visible diffuse reflectance spectra showed one dd crystal field transition and two charge‐transfer (C–T) transitions along with a sharp absorption of light in visible region for all samples. Almost frequency‐independent dielectric constant and dielectric loss along with very low values of dielectric loss indicated greatly improved dielectric properties for BGFZx = 0.03–0.10 samples.  相似文献   

10.
《Ceramics International》2016,42(16):18154-18165
Nanoparticles of Co1−xNixFe2O4 with x=0.0, 0.10, 0.20, 0.30, 0.40 and 0.50 were synthesized by co-precipitation method. The structural analysis reveals the formation of single phase cubic spinel structure with a narrow size distribution between 13–17 nm. Transmission electron microscope images are in agreement with size of nanoparticles calculated from XRD. The field emission scanning electron microscope images confirmed the presence of nano-sized grains with porous morphology. The X-ray photoelectron spectroscopy analysis confirmed the presence of Fe2+ ions with Fe3+. Room temperature magnetic measurements showed the strong influence of Ni2+ doping on saturation magnetization and coercivity. The saturation magnetization decreases from 91 emu/gm to 44 emu/gm for x=0.0–0.50 samples. Lower magnetic moment of Ni2+ (2 µB) ions in comparison to that of Co2+ (3 µB) ions is responsible for this reduction. Similarly, overall coercivity decreased from 1010 Oe to 832 Oe for x=0.0–0.50 samples and depends on crystallite size. Cation distribution has been proposed from XRD analysis and magnetization data. Electron spin resonance spectra suggested the dominancy of superexchange interactions in Co1−xNixFe2O4 samples. The optical analysis indicates that Co1−xNixFe2O4 is an indirect band gap material and band gap increases with increasing Ni2+ concentration. Dispersion behavior with increasing frequency is observed for both dielectric constant and loss tangent. The conduction process predominantly takes place through grain boundary volume. Grain boundary resistance increases with Ni2+ ion concentration.  相似文献   

11.
We successfully prepared La1?xBixFeO3 (LxB1?xFO, x?=?0.01–0.1) nanoparticles using a sol-gel technique, and studied their photocatalytic, magnetic, and electrochemical properties. Structural refinement studies of the prepared nanoparticles revealed a gradual structural transition from rhombohedral to orthorhombic. The average grain size was observed to decrease with increasing the concentration of La. The photocatalytic degradation of Rhodamine B (RhB) in the presence of the prepared nanoparticles was studied under visible light irradiation. The L0.06B0.94FO nanoparticles showed higher degradation efficiency compared to pure BiFeO3 (BFO) nanoparticles. Magnetic studies showed that La doping improved the magnetization of BFO due to the reduction in grain size and destruction of cycloid coupling of spins. Higher specific capacitance values were obtained for La doped BFO (LBFO) nanoparticles compared to BFO nanoparticles. A maximum specific capacitance of 219?F?g?1 was obtained at a current density of 1?A?g?1 for LBFO nanoparticles.  相似文献   

12.
《Ceramics International》2015,41(7):8623-8629
Samarium doped Mn–Zn ferrite nanoparticles of composition Mn0.5Zn0.5SmxFe2−xO4 (0≤x≤0.5) have been synthesized by a chemical co-precipitation method for developing low Curie temperature stable ferrofluid. These samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Electron Paramagnetic Resonance (EPR) spectroscopy and search coil method analytical techniques for their structural, morphological and magnetic properties. X-ray diffraction patterns confirmed the formation of crystalline single spinel phase of as grown nanoparticles. Lattice parameter and lattice strain increases with the increase in Sm3+ content. SEM images revealed the presence of ultrafine particles and their agglomerated structures in higher Sm3+ ions concentration analogues. The stoichiometry of the final product agreed well with the initial substitution composition as evidenced by EDS data. Electron paramagnetic resonance (EPR) spectra proved the ferromagnetic nature of nanoparticles. The magnetic measurements by search coil method showed superparamagnetism for x=0, 0.1 the samples with saturation magnetization of 23.95 emu/g for Mn0.5Zn0.5Fe2O4 sample which increases with rise in Sm3+ ions content. The results are explained and correlated with the structural, morphological and magnetic properties for developing stable kerosene based ferrofluid by using these nanoparticles.  相似文献   

13.
《Ceramics International》2016,42(3):4143-4149
Highly magnetized SrCo2−xMnxFe16O27 (x=0–0.5) W-type ferrite was synthesized by a chemical co-precipitation method followed by a hot press technique. The role of substitution of Mn captions on the thermal, structural and magnetic properties of nanoparticles was characterized by TGA/DTA, X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), electron diffraction pattern and vibrating sample magnetometer (VSM). Single phase of W-type ferrite was formed based on the XRD accuracy. According to the TEM micrograph evaluation, it was found that the particle size was in the range of 15–25 nm, with an irregular configuration. In-plane and out-of-plane magnetic hysteresis loops for bulk ferrite were measured at a room temperature up to a maximum applied field of 24 kOe. It was found that the samples with composition of x=0–0.3 have perpendicular anisotropy, while the rest of samples have in-plane anisotropy. Angular dependence of coercivity and initial magnetization curves proved that the highly magnetized bulked ferrite with x=0 to 0.3 obey the Stoner–Wohlfarth mechanism, while x=0.4 and 0.5 follow the domain wall motion rule.  相似文献   

14.
Non-stoichiometric pyrochlore ceramics with formula Bi1.5+xZnNb1.5O7+1.5x were systematically investigated. Crystal structures of the compounds were studied by X-ray diffraction (XRD) technique. The structures were identified as pure cubic pyrochlores when |x| < 0.1. Dielectric and optical properties of the compositions when x = −0.1, 0 and 0.1 were studied. All samples have high resistivities and low dielectric loss. With increasing x in Bi1.5+xZnNb1.5O7+1.5x, the lattice constant, permittivity, temperature coefficient of permittivity and thermal expansion coefficient increased, while dielectric loss decreased. Raman spectra indicated that the intensity of Bi–O stretching become stronger with increasing x. A vibration mode emerging at 861 cm−1 when x = −0.1 means that the B–O coordination environment is significantly more disordered. Absorption spectra suggested that the bandgap energy become lower from 2.86 to 2.70 eV as lattice constants increased. Strong absorption occurs at wavelengths from 433 to 459 nm, shows that samples have the ability to respond to wavelengths in the visible light region.  相似文献   

15.
Glass ceramics in the (Fe2O3)x·(B2O3)(60−x)·(ZnO)40 (x = 17.5 and 20 mol%) system were prepared by the melt-quench method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and magnetization measurements. The samples contain a unique magnetic crystalline phase, the zinc ferrite (ZnFe2O4), embedded in an amorphous matrix. The ZnFe2O4 crystals precipitate during cooling from melting temperature. From the XRD data, the average unit-cell parameter, crystallite size and the quantitative ratio of the crystallographic phases in the samples were evaluated. FTIR data revealed that the BO3 and BO4 are the main structural units of these glass ceramics network. FTIR spectra of these samples show features at characteristic vibration frequencies of ZnFe2O4. From the magnetization curves it was found that the nanoparticles exhibit ferromagnetic interactions combined with superparamagnetism with a blocking temperature, TB, which is composition dependent. In all samples hysteresis is present below TB. The coercive field is dependent on composition and magnetic field being around 0.05μB/f.u. for measurements performed in maximum 0.4 T. Finally, the magnetic behavior of iron in this system is discussed.  相似文献   

16.
《Ceramics International》2017,43(5):4139-4150
Y substituted BiFeO3 (Bi1−xYxFeO3; x=0.0–0.1) polycrystalline ceramics were synthesized by Mechanical Activation. The effect of varying composition of Y substitution on the structural, vibrational, optical and magnetic properties of doped BiFeO3 (BFO) ceramics has been investigated. Rietveld refinement of X-ray diffraction patterns reveals that all samples crystallize in distorted rhombohedral structure with R3c symmetry and no structural transition has been observed. Raman spectroscopy also confirmed the distorted perovskite structure with R3c space group. Optical studies in the spectral range 1–4.5 eV were dominated by two d-d and three charge transfer (C-T) transitions. The optical band gap decreases from 2.11 to 2.01 eV with increasing Y substitution. Room temperature magnetic measurements showed weak ferromagnetic ordering and enhancement in magnetization with increasing Y concentration. Mechanical activation leads to significantly altered magnetic properties, particularly in higher Y-doping samples. The Mössbauer spectra demonstrate the suppression of spiral spin modulation of the magnetic moments resulting in enhanced ferromagnetism with increasing doping concentration. Significant increase in Néel temperature TN in the substituted compounds was discussed on the basis of structural distortions.  相似文献   

17.
《Ceramics International》2017,43(11):8488-8496
In this paper, the structural, optical and magnetic properties of pure ZnO and Fe/Co co-doped ZnO nanoparticles are presented. Rietveld refinement of XRD pattern revealed the single phase wurtzite structure for prepared samples. FTIR study confirmed the formation of tetrahedral coordination between zinc and oxygen ions. SEM and TEM techniques were used to examine the morphology of samples. The absorption spectra showed the decrease in optical energy band gap with Fe/Co co-doping in ZnO. PL spectra demonstrated five peaks correspond to the ultraviolet region, violet, violet-blue, blue-green and green in the visible region. Emission peak in the UV region is attributed to near band-edge excitonic emission. Other four emission peaks in PL spectra are related to different defect states. M-H curve showed room temperature ferromagnetic (RTFM) behaviour of doped ZnO sample. This paper enhances the understanding of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals for application in spintronics, solar cells, and ceramics.  相似文献   

18.
Polycrystalline nanoparticles of M-type Ca(ZrCo)xFe12?2xO19 (0.0?≤?x?≤?1.0) hexaferrites were prepared using a simple heat treatment method at a low heating temperature of 650?°C. Effect of cobalt-zirconium substitution on the structural, microstructural, magnetic and dielectric properties was investigated. XRD analysis indicates that all the samples possess a hexagonal structure with anti-ferromagnetic α-Fe2O3 phase. The values of lattice parameters and cell volume found to be increased with increasing the cobalt-zirconium substitution along with the amount of α-Fe2O3 phase. Crystal symmetry has not affected by Zr–Co substitution in prepared calcium hexaferrite samples but the position of diffraction peak [108] is found to shift towards a lower angle as an increase in the substitution of Zr–Co. The crystallite size found to vary between 12 and 17?nm. SEM images show agglomerated grains and surface morphology has changed with Zr–Co substitution. EDX analysis of typical samples revealed the presence of Ca, Fe, Co, Zr. The magnetic analysis revealed the formation of multi-domain structure. Room temperature Mössbauer spectra of prepared samples show that all five sextets are merged together with a paramagnetic doublet and it confirmed that the size of particles is very small in the nano range. Single and double semicircle arcs were observed in Cole-Cole plots, due to the contributions of grain and grain boundaries resistance.  相似文献   

19.
A series of multiferroic ceramics CuFe1-xEuxO2 (x?=?0–0.10) are prepared by traditional solid-state reaction. The effects of Eu doping on the microstructure, vacancy-type defects, and magnetic properties of CuFeO2 ceramics are investigated systematically by means of X-ray diffraction, Raman spectroscopy, scanning electron microscope, positron annihilation lifetime and physical property measurement system. The results show that no phase transition occurs in the entire range of doping content (x?=?0–0.10), but the single phase structure is damaged by high Eu content (x?=?0.04–0.10). Positron annihilation measurements indicate that the local electron density and the vacancy-type defect concentration increase gradually with the increase in Eu content from 0 to 0.08. Furthermore, abnormal changes in lifetime parameters can be found in x?=?0.10 sample induced by the existence of impurity phase in the system. The magnetic measurements reveal that all the samples exhibit two successive magnetic transitions at T?=?15 and 11?K. In x?=?0.02 sample, the coexistence of ferromagnetism and antiferromagnetism can be found, and a maximum saturation magnetization of 11.548?emu/g at 5?kOe is achieved. The possible reasons for the above observations are discussed in detail.  相似文献   

20.
《Ceramics International》2015,41(8):9276-9284
The structural and optical properties of ZnO nanoparticles doped simultaneously with Mg and Al were investigated. XRD results revealed the hexagonal wurtzite crystalline structure of ZnO. The FE-SEM study confirmed the formation of nano-sized homogeneous grains whose sizes decreased monotonously with increasing doping concentrations of Mg and Al. The absorption spectra showed that band gap increased from 3.20 to 3.31 eV with Mg doping. As the Al concentration changed from x=0.01 to x=0.06 mol% at constant Mg concentration the band gap observed to be decreased. Particle sizes estimated from effective mass approximation using absorption data and these values are in good agreement with the crystallite sizes calculated from XRD data. Raman spectra of ZnO showed a characteristic peak at 436 cm−1 correspond to a non-polar optical phonon E2 (high). With increase of the Al doping concentrations, E2 (high) phonon frequency shifted to 439 cm−1 from to 436 cm−1. The origin of E2 (high) peak shift in ZnO nanoparticles is attributed to optical phonon confinement effects or the presence of intrinsic defects on the nanoparticles. PL spectra indicated that with increase of Al co-doping along with Mg into ZnO, intensity of the peak positioned at 395 nm was initially increased at x=0 and then decreased with increase of the Al concentrations from x=0.01 to x=0.06 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号