首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(14):15861-15867
A visible light active photocatalyst, Ag/TiO2/MWCNT was synthesized by loading of Ag nanoparticles onto TiO2/MWCNT nanocomposite. The photocatalytic activity of Ag/TiO2/MWCNT ternary nanocomposite was evaluated for the degradation of methylene blue dye under UV and visible light irradiation. Ag/TiO2/MWCNT ternary nanocomposite exhibits (~9 times) higher photocatalytic activity than TiO2/MWCNT and (~2 times) higher than Ag/TiO2 binary nanocomposites under visible light irradiation. The enhancement in the photocatalytic activity is attributed to the synergistic effect between Ag nanoparticles and MWCNT, which enhance the charge separation efficiency by Schottky barrier formation at Ag/TiO2 interface and role of MWCNT as an electron reservoir. Effect of different scavengers on the degradation of methylene blue dye in the presence of catalyst has been investigated to find the role of photogenerated electrons and holes. Simultaneously, the Ag/TiO2/MWCNT shows excellent photocatalytic stability. This work highlights the importance of Ag/TiO2/MWCNT ternary nanocomposite as highly efficient and stable visible-light-driven photocatalyst for the degradation of organic dyes.  相似文献   

2.
Pure TiO2 and carbon quantum dots (CQDs)-doped TiO2 nanocomposite (CQDs/TiO2 nanocomposite) were prepared by a sol-gel approach for photocatalytic removal of Rhodamine B and cefradine. Analyses by Transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), UV–visible spectroscopy and X-ray powder diffraction (XRD) confirmed the successful formation of CQDs/TiO2 heterostructure. The as-prepared TiO2 and CQDs/TiO2 composite possessed small particles, spherical-like shape, and anatase crystal form. Meanwhile, Rhodamine B and cefradine were chosen to evaluate the photocatalytic activity of TiO2 and CQDs/TiO2 composite. Results revealed that with the facile decoration of CQDs, the absorption of photocatalyst was extended into visible light region and photocatalytic activity was improved in comparison with pure TiO2. Furthermore, the mechanism for the improvement of the photocatalytic performance of the composites was discussed on the basis of the results. CQDs play an important role in the photocatalytic process, due to their superior ability to extend the visible absorption and produce more electrons and electron–hole pairs for the degradation of pollutants. In all, the paper offers further insights into the development of CQDs/TiO2 nanocomposite as photocatalyst for the degradation of antibiotics.  相似文献   

3.
《Ceramics International》2017,43(6):4866-4872
A unique Cu2O/TiO2 nanocomposite with high photocatalytic activity was synthesized via a two-step chemical solution method and used for the photocatalytic degradation of organic dye. The structure, morphology, composition, optical and photocatalytic properties of the as-prepared samples were investigated in detail. The results suggested that the Cu2O/TiO2 nanocomposite is composed of hierarchical TiO2 hollow microstructure coated by a great many Cu2O nanoparticles. The photocatalytic performance of Cu2O/TiO2 nanocomposite was evaluated by the photodegradation of methylene blue (MB) under visible light, and compared with those of the pure TiO2 and Cu2O photocatalysts synthesized by the identical synthetic route. Within 120 min of reaction time, nearly 100% decolorization efficiency of MB was achieved by Cu2O/TiO2 photocatalyst, which is much higher than that of pure TiO2 (26%) or Cu2O (32%). The outstanding photocatalytic efficiency was mainly ascribed to the unique architecture, the extended photoresponse range and efficient separation of the electron-hole pairs in the Cu2O/TiO2 heterojunction. In addition, the Cu2O/TiO2 nanocomposite also retains good cycling stability in the photodegradation of MB.  相似文献   

4.
《Ceramics International》2017,43(16):13447-13460
A series of novel ZnO/Ag/Ag2WO4/AgI nanocomposites have been successfully synthesized by a facile ultrasonic-irradiation method and their photocatalytic activities were explored under visible-light illumination using rhodamine B. The synthesized nanocomposites were characterized by various techniques to determine their structural, morphological, and electronical properties. Effect of the amount of AgI, as visible-light sensitizer, on the photocatalytic activity was studied and it was found that the nanocomposite with 30% of AgI displayed the highest photocatalytic activity. Activity of this photocatalyst was almost 150, 17.8, and 55.1 times greater than those of the ZnO, ZnO/Ag/Ag2WO4, and ZnO/AgI photocatalysts, respectively. Besides, the importance of active species during the degradation process was explored and it was shown that superoxide anion radical has major role in the photodegradation reaction. Moreover, the outstanding performance of the best nanocomposite in degradations of three more dye pollutants was confirmed. Finally, a cascade mechanism was proposed for the greatly enhanced activity of the nanocomposites in degradation reactions.  相似文献   

5.
《Ceramics International》2021,47(22):31617-31624
The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.  相似文献   

6.
In order to compare the photocatalytic properties of TiO2, ZnO and their composite in the gas phase pollutant environment, nanocomposite with different mole ratios of TiO2/ZnO were designed to degrade gaseous formaldehyde. The results showed that the rate constant of TiO2 for formaldehyde degradation was 0.05 min?1 which was two orders of magnitude larger than that of ZnO in our experiment. Through comprehensive analysis of UV–vis diffuse reflectance (UV–vis) spectra, photoluminescence spectra (PL) and energy band diagram, it was found that the differences of photocatalytic properties between ZnO and TiO2 may mainly originate from the increased recombination of photoinduced charges in ZnO. The photocatalytic properties of TiO2/ZnO composite for formaldehyde degradation were much worse than those of TiO2, while better than those of ZnO. The addition of a small amount of ZnO weakened the photocatalytic properties of TiO2. It may be attributed to that the recombination action of photoinduced electron–hole pairs in ZnO.  相似文献   

7.
A new type of photodegradable poly(vinyl chloride)‐bismuth oxyiodide/TiO2 (PVC‐BiOI/TiO2) nanocomposite film was prepared by embedding a nano‐TiO2 photocatalyst modified by BiOI into the commercial PVC plastic. The solid‐phase photocatalytic degradation behavior of the as‐prepared film was investigated in ambient air at room temperature under UV light irradiation, with the aid of UV‐Vis spectroscopy, weight loss monitoring, scanning electron microscopy, and FT‐IR spectroscopy. Compared to the PVC‐TiO2 nanocomposite film, the PVC‐BiOI nanocomposite film and the pure PVC film, the PVC‐BiOI/TiO2 nanocomposite film exhibited a higher photocatalytic degradation activity. The optimal mass ratio of BiOI to TiO2 was found to be 0.75 %. The weight loss rate of the PVC‐BiOI/TiO2 nanocomposite film reached 30.8 % after 336 h of irradiation, which is 1.5 times higher than that of the PVC‐TiO2 nanocomposite film under identical conditions. The solid‐phase photocatalytic degradation mechanism of the nanocomposite films was briefly discussed.  相似文献   

8.
《Ceramics International》2020,46(1):468-475
Rational design of semiconductor membrane photocatalyst with good mechanical flexibility and excellent photocatalytic activity is of significance for environmental remediation. Herein, flexible Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures were fabricated through combining a simple electrospinning method and subsequent hydrothermal reaction and photodeposition process. In the ternary nanocomposite, ZnO nanorods were firmly anchored onto TiO2 nanofibers, while Ag nanoparticles were evenly decorated on the surface of both ZnO and TiO2. Benefiting from the improved light absorption, large surface area, and effective charge separation, the resultant Ag@ZnO/TiO2 membranes displayed superior photocatalytic degradation efficiency of 91.6% toward tetracycline hydrochloride within 1 h, and also exhibited prominent antibacterial activity with a 6.5 log inactivation of E. coli after 1 h simulated solar light exposure. Significantly, the membrane photocatalyst still preserved structural integrity and mechanical flexibility after utilization. This study provides an alternative approach for designing and synthesizing flexible TiO2-based membrane photocatalysts toward high-efficiency water purification.  相似文献   

9.
Visible-light-induced titania/sulfanilic acid nano-composite photocatalysts were prepared and characterized by FTIR, XPS, UV-vis, XRD, and SEM. The results indicate that the formation of Ti-O-S bonds after the modification of P25 TiO2 nanoparticles with sulfanilic acid ligands extends the photoresponse of the photocatalyst from the UV to the visible range. The photocatalytic activity of the nano-composite photocatalyst was examined by degrading Congo red under visible light, in which its effecting factors such as irradiation time, catalyst dosage, solution pH and the addition of H2O2, were investigated in detail. The possible mechanism of photocatalytic degradation under visible irradiation has been also presented.  相似文献   

10.
《Ceramics International》2017,43(9):6771-6777
Photocatalytic reduction of carbon dioxide (CO2) into valuable hydrocarbon such as methane (CH4) using water as reducing agent is a good strategy for environment and energy applications. In this study, a facile and simple sol-gel method was employed for the synthesis of metal (Cu and Ag) loaded nanosized N/TiO2 photocatalyst. The prepared photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, BET Surface area analyzer, X-ray photoelectron spectroscopy and UV–vis diffuses reflectance spectroscopy. The photocatalytic conversion of CO2 into methane was carried out under visible light irradiation (λ≥420 nm) by prepared photocatalysts in order to evaluate the photocatalytic efficiency. The results demonstrate that Ag loaded N/TiO2 showed enhanced photocatalytic performance for methane production from CO2 compared to other Cu–N/TiO2, N/TiO2 and TiO2 photocatalysts. The improvement in the photocatalytic activity could be attributed to high specific surface area, extended visible light absorption and suppressed recombination of electron – hole pair due to synergistic effects of silver and nitrogen in the Ag–N/TiO2 photocatalyst. This study demonstrates that Ag–N/TiO2 is a promising photocatalytic material for photocatalytic reduction of CO2 into hydrocarbons under visible light irradiation.  相似文献   

11.
A novel Cu2O/TiO2/Bi2O3 ternary nanocomposite was prepared, in which copper oxide improves the visible light absorption of TiO2 and bismuth oxide improves electron–hole separation. The ternary composite exhibited extended absorption in the visible region, as determined by UV–Vis diffuse reflectance spectroscopy. High-resolution transmission electron microscopy images showed close contact among the individual semiconductor oxides in the ternary Cu2O/TiO2/Bi2O3 nanocomposite. Improved charge carrier separation and transport were observed in the Cu2O/TiO2/Bi2O3 ternary composite using electrochemical impedance spectroscopy and photocurrent analysis. TiO2 modified with bismuth and copper oxides showed exceptional photocatalytic activity for hydrogen production under natural solar light. With optimum bismuth and copper oxide loadings, the Cu2O/TiO2/Bi2O3 ternary nanocomposite exhibited an H2 production (3678 μmol/h) 35 times higher than that of bare TiO2 (105?μmol/h). The synergistic effect of improved visible absorption and minimal recombination was responsible for the enhanced performance of the as-synthesized ternary nanocomposite.  相似文献   

12.
Abstract

Today, the ultrasound utilizing for material synthesis has been extensively investigated. The unusual acoustic cavitation phenomenon caused by ultrasonic waves has created a new world for the production of high efficiency photocatalysts with new structures. In this study, TiO2, TiO2-Ag, and TiO2-ZnO thin film photocatalysts were prepared using titanium isopropoxide Ti[OCH(CH3)2]4, zinc acetate dehydrates (CH3COO)2Zn·2H2O, and silver nitrate AgNO3 by a sol–gel method under the ultrasonic irradiation. The prepared photocatalysts were characterized by UV–vis diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive spectroscopy. The SEM images showed that the Ag and ZnO particles were evenly dispersed in the photocatalysts due to the ultrasonic irradiation, and Ag particles were approximately 90?nm, which is relatively small compared to the photocatalysts which is not treated with ultrasonic irradiation. The catalytic activity of the photocatalysts was determined using Acid Red 27 dye. The most excellent catalytic degradation was obtained with TiO2-ZnO thin film photocatalyst. In comparison to the conventional photocatalyst, the efficiency of photocatalytic activity of the photocatalyst produced under ultrasonication has been increased due to the reduced size of Ag and ZnO and its uniform dispersion.  相似文献   

13.
Cu2O/TiO2 composite nanotube arrays demonstrating enhanced photocatalytic performance were synthesized using an electrodeposition method to impregnate the p-type Cu2O into the n-type titanium dioxide nanotube arrays (TNTs). The morphological results confirmed that the TNTs are wrapped by the Cu2O nanoparticles and the UV–Vis absorption spectra showed that the Cu2O/TNTs display a better ability for visible light absorption compared to the pure TNTs. CO2 photocatalytic reduction experiments carried out by using Cu2O/TNT nanocomposites proved that Cu2O/TNTs exhibit high photocatalytic activity in conversion of CO2 to methanol, while pure TNT arrays were almost inactive. Furthermore, Cu2O/TNTs also exhibited augmented activity in degradation of target organic pollutant like acid orange (AO) under visible light irradiation. The ultra enhanced photocatalytic activity noticed by using Cu2O/TNTs in CO2 reduction and degradation of organic pollutant could be attributed to the formation of Cu2O/TiO2 heterostructures with higher charge separation efficiency.  相似文献   

14.
A TiO2–nanoclay nanocomposite was used as a photocatalyst for the degradation of phenol in presence of acoustic cavitation. TiO2–nanoclay nanocomposite was synthesised in benzyl alcohol medium wherein TiO2 nanoparticles were formed between the nanoclay platelets. The synthesised product was characterised by using FTIR, XRD and TEM techniques. TEM image shows that TiO2–nanoclay nanocomposite particles were in the range of 30–40 nm. XRD gram confirms the formation of nanocomposite of TiO2 nanoclay. The effect of cavitation and TiO2–nanoclay nanocomposite photocatalyst on phenol removal was investigated. The effects of various parameters such as nanocomposite loading, initial concentration, etc., have been studied. On comparing the results obtained with that of nanocomposite without UV, it was found for an initial concentration of 500 mg/L of phenol, the TiO2–nanoclay nanocomposite exhibited higher percentage of pollutant removal (59%) and for nanoclay it was 47%. © 2011 Canadian Society for Chemical Engineering  相似文献   

15.
《Ceramics International》2015,41(6):7471-7477
Here, novel graphene/TiO2 nanocomposite has been successfully prepared by loading flocculent-like titanate nanostructure in graphene sheets via hydrothermal method plus a subsequent annealing process. The as-obtained hybrid was characterized by X-ray diffraction, scanning electron microscopy with an energy dispersive spectroscope (EDS), Raman, and UV–vis diffuse reflectance spectra, respectively. The photoelectrochemical activities and photocatalytic degradation performance of methyl orange under the illumination of ultraviolet light were investigated, and the flocculent-like TiO2/graphene composites was found to have a superior photocatalytic activity compared to flocculent-like titanate nanostructure and commercial anatase TiO2 powder, which can be attributed to the improved light absorption and extremely efficient charge separation of the hybrid structure. The results suggest that the as-prepared flocculent-like TiO2/graphene composite is a promising photocatalyst for photoelectrochemical hydrogen production and pollution removal.  相似文献   

16.
Ag2O modified TiO2 nanoparticles were synthesized by precipitation and wet impregnation method. They were characterized by X-ray diffraction technique, UV-vis diffuse reflectance spectrophotometry and Fourier transform infrared spectroscopy. Inductively coupled plasma mass spectrometry was performed to quantify Ag amount in the photocatalysts. The photocatalysts occurred in the concentration range of 0.05%–2% in the Ag/Ti molar ratio. The photocatalytic activity was investigated for the degradation of methylene blue as a model organic dye. Optimum reaction conditions were determined to provide maximum dye degradation efficiencies under visible light. Under visible light illumination, C2-Ag2O/TiO2 (Ag/Ti = 0.1/100) showed the highest activity. Reaction rate constants were calculated and compared for various reaction conditions.  相似文献   

17.

This work explores the effect of ternary nanostructure for the enhanced photocatalytic degradation of pollutants and dyes. One-pot solvothermal-assisted approach was used for producing nanosized Pt@TiO2 hybrid nanoparticles (NPs) decorated on reduced graphene oxide (rGO) layers. The microstructure, morphology, chemical composition, and optical absorption of the designed photocatalyst was successfully characterized (using XRD, TEM, Raman, UV–visible absorption spectra, and XPS techniques). The ternary Pt@TiO2-rGO photocatalyst consist of monodisperse quasi-spherical Pt@TiO2 NPs with an average size of 11 nm deposited on the rGO nanosheets. Furthermore, Pt@TiO2-rGO was further investigated for the photodegradation of pesticide and dyes under UV and visible light. The ternary Pt@TiO2-rGO photocatalyst proved a significant improvement on the photodecomposition of pollutants compared to hybrid Pt@TiO2. The Pt@TiO2-rGO photocatalyst was found to show seven- and threefold increase in the photocatalytic activity compared to TiO2 and Pt@TiO2 NPs, respectively which resulted from the high surface area of rGO and as well as the strong Pt/TiO2/rGO interactions which ensured excellent properties of charge separation. On the other hand, the ternary photocatalyst exhibited very good recycle and reuse capacity up to five cycles.

  相似文献   

18.
《Ceramics International》2019,45(11):14167-14172
Approximately 47% of solar-terrestrial radiation is visible. It is a great achievement to produce a highly efficient visible driven photocatalyst. Here TiO2/NiS2/Cu nanocomposite was prepared as a highly active visible driven photocatalyst. TiO2/NiS2/Cu nanocomposite was prepared by microwave method. It degrades 92%, 86%, 87%, and 88% of Rhodamine B (RhB), Methyl orange (MO), Acid Black 1 (AB1), and Acid Brown 214 (AB214), respectively. Adding NiS2 and Cu to TiO2 dramatically increased the degradation efficiency from 17% for bare TiO2 to 92% for TiO2/NiS2/Cu nanocomposite under visible light. As-prepared TiO2/NiS2/Cu nanocomposite was characterized by SEM, TEM, XRD, DRS, BET, and EDX.  相似文献   

19.
《Ceramics International》2016,42(6):7192-7202
In this paper, a series of CdS/TiO2 NTs have been synthesized by SILAR method. The as-prepared CdS/TiO2 NTs have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), and ultraviolet–visible (UV–vis). And their photocatalytic activities have been investigated on the degradation of methylene blue under simulated solar light irradiation. XRD results indicate that TiO2 NTs were anatase phase, CdS nanoparticles were hexagonal phase. FESEM results indicate that low deposition concentration can keep the nanotubular structures. UV–vis results indicate that CdS can be used to improve the absorbing capability of TiO2 NTs for visible light, and the content of CdS affects the band gap. Photocatalytic results indicate that CdS nanoparticles are conducive to improve the photocatalytic efficiency of TiO2 NTs, and the highest degradation rate can reach 93.8%. And the photocatalytic mechanism of CdS/TiO2 NTs to methylene blue is also described.  相似文献   

20.
The design and construction of efficient visible light responsive composite photocatalysts with intimate interfacial contacts in photocatalytic field have attracted huge interest. Herein, a double-shelled ZnIn2S4 nanosheets/TiO2 hollow composite single nanosphere (ZIS/TiO2) was first fabricated by a facile hydrothermal process, where 2D ZnIn2S4 nanosheets self-assembled on the external surface of TiO2 hollow nanosphere to form the double-shelled hollow single sphere. The morphologies, structures, optical properties of as-prepared double-shelled ZIS/TiO2 hollow nanospheres were characterized in detail. The photocatalytic activities of double-shelled ZIS/TiO2 nanospheres for the photodegradations of Tetracycline hydrochloride, Levofloxacin and Rhodamine B under visible light irradiation have been investigated. Compared to pure TiO2 and ZnIn2S4, the obtained ZIS/TiO2 samples have significantly improved photocatalytic performances. The most optimal photocatalytic activity of ZIS/TiO2-2 nanocomposite with 64 wt% ZnIn2S4 nanosheets coated is observed, and its degradation rate constant is 2.32 and 2.14 times as high as those of pure TiO2 and ZnIn2S4. The superior photocatalytic performance of ZIS/TiO2 nanocomposite can be ascribed to its unique double shell hollow structure and the synergistic effect between ZnIn2S4 and TiO2. Our result provides some guidance for designing novel morphologies of composite photocatalyst with good photocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号