首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaOH-activated ground fly ash geopolymer cured at ambient temperature   总被引:3,自引:0,他引:3  
NaOH-activated ground fly ash geopolymers, cured at room temperature, were studied in this paper. Ground fly ash (GFA), with a median particle size of 10.5 μm, was used as source material. NaOH concentrations of 4.5-16.5 M (M) were used as an alkali activator. Compressive strength tests and microstructure observations using SEM, EDX, XRD and FTIR were performed. Results indicated that GFA gave higher strength geopolymer paste compared to original fly ash. Ground fly ash could be used as a source material for making geopolymers cured at room temperature. An increase in NaOH concentration from 4.5 to 14.0 M increased the strength of GFA geopolymer pastes. Microstructure studies indicated that NaOH concentrations of 12.0-14.0 M created new crystalline products of sodium aluminosilicate. The compressive strengths at 28 days of 20.0-23.0 MPa were obtained with the NaOH concentrations of 9.5-14.0 M. Increasing the NaOH concentration beyond this point resulted in a decrease in the strength of the paste due to early precipitation of aluminosilicate products.  相似文献   

2.
In this study, the effect of nano silica on the short term severe durability performance of fly ash based geopolymer concrete (GPC) specimens was investigated. Four types of GPC were produced with two types of low calcium fly ashes (FAI and FAII) with and without nano silica, and ordinary Portland cement concrete (OPC) concrete was also cast for reference. For the geopolymerization process, the alkaline activator has selected a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) with a ratio (Na2SiO3/ NaOH) of 2.5. Main objectives of the study were to investigate the effect of usability or replaceability of nano silica-based low calcium fly ash based geopolymer concretes instead of OPC concrete in structural applications and make a contribution to standardization process of the fly ash based geopolymer concrete. To achieve the goals, four types of geopolymer and OPC concretes were subjected to sulfuric acid (H2SO4), magnesium sulfate (MgSO4) and seawater (NaCl) solutions with concentrations of 5%, 5%, and 3.5%, respectively. Visual appearances and weight changes of the concretes under chemical environments were utilized for durability aspects. Compressive, splitting tensile and flexural strength tests were also performed on specimens to evaluate the mechanical performance under chemical environments. Results indicated that FAGPC concretes showed superior performance than OPC concrete under chemical attacks due to low calcium content. Amongst the chemical environments, sulfuric acid (H2SO4) was found to be the most dangerous environment for all concrete types. In addition, nano silica (NS) addition to FAGPC specimens improved both durability and residual mechanical strength due to the lower porosity and more dense structure. The FAIIGPC specimens including nano silica showed the superior mechanical performance under chemical environment.  相似文献   

3.
The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.  相似文献   

4.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

5.
Alkali-activated fly ash-based cements are concrete binders that utilise fly ash as their major solid raw material. The solid particles are activated using concentrated silicate and hydroxide solution to produce high-strength products. Due to the highly alkaline nature of the solution, precipitation of the reactive species, both from the solids and from the solution, proceeds at a very fast rate. This renders short setting times, which can be advantageous or disadvantageous depending on the practical situation. The present work examines the effects of inorganic salt addition towards the setting and rheological characteristics of the early pastes. Compressive strength, Fourier transform infrared spectroscopy (FTIR) and X-ray diffractograms were collected to examine the hardened products. It was found that calcium (Ca) and magnesium (Mg) salts shortened the setting time by providing heterogeneous nucleation centers in the initial paste solution. Potassium salts retarded setting only to the cements, which used less sodium silicate in the initial solution for activation. Managed ionic contamination can be used to increase the product early strength. However, its long-term effects still need to be identified.  相似文献   

6.
《Ceramics International》2021,47(21):29550-29566
Fly ash-based geopolymer concrete (FABGC) is a type of environment-friendly building material that displays remarkable mechanical properties and durability. It has the potential for extensive application in the field of civil engineering. This paper considers the related research on the microstructure and durability of FABGC to systematically summarize the results on its alkali-activated reaction, pore structure, and interface characteristics. The degradation mechanisms of FABGC in various corrosive environments are analyzed, and the factors that affect its microstructure and durability are discussed. It is observed that aluminosilicate gel produced by the alkali-activated process of FABGC has an optimizing effect on the pore structure and interfacial transition zone. An effective development of the microstructure can improve the durability of FABGC to a certain extent. At present, there is no consensus on the research conclusions on the microstructure and durability of FABGC. Therefore, further research is required.  相似文献   

7.
《Ceramics International》2015,41(4):5696-5704
The use of solid activators in the manufacture of geopolymer enhances its commercial viability as it aids the development of a one-part “just add water” geopolymer mixture, similar to the conventional Portland cement-based materials. This study is aimed to synthesize heat and ambient cured one-part geopolymer mixes. Appropriate combinations of low calcium (Class F) fly ash, slag and hydrated lime as the aluminosilicate source materials were activated by three different grades of sodium silicate and a combination of sodium silicate and sodium hydroxide powders. A conventional two-part geopolymer mix with the commonly used sodium hydroxide and sodium silicate solutions was also made for comparison. Effects of the type and amount of the solid activator, the amount of fly ash replacement with slag and hydrated lime and water content on short term mechanical properties of the heat cured one-part geopolymer mixtures including workability of the fresh mix, hardened density and compressive strength were evaluated. Subsequently, effects of ambient curing on the properties of the developed one-part geopolymer mixes were also investigated. Moderate to high compressive strength of over 37 MPa developed for the heat and ambient cured one-part geopolymer mixes. The 28-days compressive strengths of the ambient cured one-part geopolymer mixtures, regardless of the type of activator and geopolymer source materials, were comparable to those of the counterpart heat cured one-part geopolymer mixes. Such one-part geopolymer mixes could enhance the commercial viability and large-scale applications of the geopolymer in the construction industry.  相似文献   

8.
《Ceramics International》2016,42(5):6288-6295
In this study, ASTM Class C fly ash used as an alumino-silicate source was activated by metal alkali and cured at low temperature. Basalt fibers which have excellent physical and mechanical properties were added to fly ash-based geopolymers for 10–30% solid content to act as a reinforced material, and its influence on the compressive strength of geopolymer composites has been investigated. XRD study of synthesized geopolymers showed an amorphous phase of geopolymeric gel in the 2θ region of 23°–38° including calcium-silicate-hydrate (C-S-H) phase, some crystalline phases of magnesioferrite, and un-reacted quartz. The microstructure investigation illustrated fly ash particles and basalt fibers were embedded in a dense alumino-silicate matrix, though there was some un-reacted phase occurred. The compressive strength of fly ash-based geopolymer matrix without basalt fibers added samples aged 28 days was 35 MPa which significantly increased 37% when the 10 wt%. basalt fibers were added. However, the addition of basalt fibers from 15 to 30 wt% has not shown a major improvement in compressive strength. In addition, it was found that the compressive strength was strong relevant to the Ca/Si ratio and the C-S-H phase in the geopolymer matrix as high compressive strength was found in the samples with high Ca/Si ratio. It is suggested that basalt fibers are one of the potential candidates as reinforcements for geopolymer composites development.  相似文献   

9.
This paper reports the results of the study of the influence of elevated temperature curing on phase composition, microstructure and strength development in geopolymer materials prepared using Class F fly ash and sodium silicate and sodium hydroxide solutions. In particular, the effect of storage at room temperature before the application of heat on strength development and phase composition was studied. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SEM were utilised in this study.Long precuring at room temperature before application of heat was beneficial for strength development in all studied materials, as strength comparable to 1 month of curing at elevated temperature can develop in this case only after 24 h of heat curing. The main product of reaction in the geopolymeric materials was amorphous alkali aluminosilicate gel. However, in the case of sodium hydroxide activator in addition to it, traces of chabazite, Linde Type A, Na-P1 (gismondine) zeolites and hydroxysodalite were also present. The type of zeolite present and composition of aluminosilicate gel were dependent on the curing history.  相似文献   

10.
This paper presents an investigation into the durability of geopolymer materials manufactured using class F fly ash and alkaline activators when exposed to a sulfate environment. Three tests were used to determine resistance of geopolymer materials. The tests involved immersions for a period of 5 months into 5% solutions of sodium sulfate and magnesium sulfate, and a solution of 5% sodium sulfate+5% magnesium sulfate. The evolution of weight, compressive strength, products of degradation and microstructural changes were studied.In the sodium sulfate solution, significant fluctuations of strength occurred with strength reduction 18% in the 8FASS material prepared with sodium silicate and 65% in the 8FAK material prepared with a mixture of sodium hydroxide and potassium hydroxide as activators, while 4% strength increase was measured in the 8FA specimens activated by sodium hydroxide. In the magnesium sulfate solution, 12% and 35% strength increase was measured in the 8FA and 8FAK specimens, respectively; and 24% strength decline was measured in the 8FASS samples. The most significant deterioration was observed in the sodium sulfate solution and it appeared to be connected to migration of alkalies into solution. In the magnesium sulfate solution, migration of alkalies into the solution and diffusion of magnesium and calcium to the subsurface areas was observed in the specimens prepared using sodium silicate and a mixture of sodium and potassium hydroxides as activators. The least strength changes were found in the solution of 5% sodium sulfate+5% magnesium sulfate. The material prepared using sodium hydroxide had the best performance, which was attributed to its stable cross-linked aluminosilicate polymer structure.  相似文献   

11.
《Ceramics International》2021,47(19):27361-27371
Fly ash-based geopolymer foam mortar (GFM) was used as an adsorbent material to methylene blue (MB) and also the dye removal material using the photocatalytic mechanism. The GFM, containing 50 wt% river sand aggregate, was prepared to have approximately 46% open porosity, pore size distribution between 0.01 and 3.5 mm, and water permeability of 0.2 cm/s. The variation of adsorption efficiency and adsorption capacity with the contact time of the GFM was first evaluated using various GFM dosages (10, 20, 50, 80, and 100 g/L). The adsorption efficiency at equilibrium (AEe) was found to linearly increase, while adsorption capacity (qae) exponentially decayed, with an increase of loading dosages. The photocatalytic removal efficiency of ~100% was obtained with 50, 80, and 100 g/L GFM loading dosages, with a shorter time at higher dosages. The GFM could be reused, without regeneration, for 5 cycles. The AEe and qae for each reused cycle did not noticeably change suggesting the reusability. The photocatalytic removal efficiency, however, was found to decrease with an increase of the reused cycle. After the 5th cycle, the highest removal efficiency was reduced to ~70%. The attempts to treat the GFMs with hydrochloric (HCl) and phosphoric (H3PO4) acid to reduce the excess alkaline did not give satisfactory results as expected. The photocatalytic removal efficiency had subsided after the treatment with both acids.  相似文献   

12.
Effect of elevated temperatures on geopolymer paste, mortar and concrete   总被引:1,自引:0,他引:1  
Geopolymers are generally believed to provide good fire resistance due to their ceramic-like properties. Previous experimental studies on geopolymer under elevated temperatures have mainly focused on metakaolin-based geopolymers. This paper presents the results of a study on the effect of elevated temperature on geopolymer paste, mortar and concrete made using fly ash as a precursor. The geopolymer was synthesized with sodium silicate and potassium hydroxide solutions. Various experimental parameters have been examined such as specimen sizing, aggregate sizing, aggregate type and superplasticizer type. The study identifies specimen size and aggregate size as the two main factors that govern geopolymer behavior at elevated temperatures (800 °C). Aggregate sizes larger than 10 mm resulted in good strength performances in both ambient and elevated temperatures. Strength loss in geopolymer concrete at elevated temperatures is attributed to the thermal mismatch between the geopolymer matrix and the aggregates.  相似文献   

13.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   

14.
Modeling the hydration of concrete incorporating fly ash or slag   总被引:2,自引:0,他引:2  
Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.  相似文献   

15.
《Ceramics International》2023,49(4):5828-5833
Coal fly ash-based porous geopolymer (CFAPG) is a potential adsorbent for heavy metal-contaminated water remediation and can also mitigate the accumulation of coal fly ash from thermal power plants. Production parameters influence the physicochemical properties (e.g., adsorption capacity) of CFAPG. Ten potential factors involved in the CFAPG production process were examined using a Plackett-Burman design (PBD) and then an orthogonal experimental design (OED). The results show the alkali activator modulus (MS), alkali-ash mass ratio (AA), foaming agent-ash mass ratio (FAR), and sodium dodecyl sulfate-ash mass ratio (SDSA) were the most important factors influencing the Zn adsorption capacity of CFAPG. Ternary plots confirm the interaction between these four factors, with the role of FAR being easily masked by other factors and MS being the least influenced by other factors. Furthermore, Zn adsorption on the CFAPG created with optimal parameters was best described by the Bi_Langmuir model, indicating two different sorption site classes on the surface of CFAPG with a total maximum Zn adsorption capacity of 13.42 mg g?1. These results provide key parameters for the production of geopolymers as heavy metal adsorbents.  相似文献   

16.
This paper presents a laboratory study on the strength development of concrete containing fly ash and optimum use of fly ash in concrete. Fly ash was added according to the partial replacement method in mixtures. A total of 28 mixtures with different mix designs were prepared. 4 of them were prepared as control mixtures with 250, 300, 350, and 400 kg/m3 cement content in order to calculate the Bolomey and Feret coefficients (KB, KF). Four groups of mixtures were prepared, each group containing six mix designs and using the cement content of one of the control mixture as the base for the mix design. In each group 20% of the cement content of the control mixture was removed, resulting in starting mixtures with 200, 240, 280, and 320 kg/m3 cement content. Fly ash in the amount of approximately 15%, 25%, 33%, 42%, 50%, and 58% of the rest of the cement content was added as partial cement replacement. All specimens were moist cured for 28 and 180 days before compressive strength testing. The efficiency and the maximum content of fly ash that gives the maximum compressive strength were obtained by using Bolomey and Feret strength equations. Hence, the maximum amount of usable fly ash amount with the optimum efficiency was determined.This study showed that strength increases with increasing amount of fly ash up to an optimum value, beyond which strength starts to decrease with further addition of fly ash. The optimum value of fly ash for the four test groups is about 40% of cement. Fly ash/cement ratio is an important factor determining the efficiency of fly ash.  相似文献   

17.
The incorporation of fly ash (FA) and wood ash (WA) in concrete as supplementary cementitious materials (SCM) was studied. The chemical composition of ordinary Portland cement, FA and WA was determined according to ASTM C-114. SEM and optical microscopy were used for the analysis of concrete. Setting time, compressive strength, water absorption and acid resistance of the concrete with different percentages of SCM ranging from 0 to 60% were evaluated. The results obtained showed that setting time and rate of water absorption increased with the increase in percentage of SCM. After 7 and 28 days, the compressive strength of concrete with 20% FA as SCM was higher than that with substitution with 20% WA. Resistance of concrete against sulphate attack increased with an increase in the percentage of FA. It was found that incorporating more than 20% WA resulted in a decrease in sulphate attack resistance.  相似文献   

18.
《Ceramics International》2016,42(12):13507-13518
This work aims to verify the feasibility of utilizing iron ore tailing (IOT) in porous geopolymer and intends to broaden the application of porous geopolymer in heavy metal removal aspect. Porous geopolymer was prepared using fly ash as resource material, which was partially replaced by IOT at level of 30%, by weight, with H2O2 as foaming agent and removal efficiency, adsorption affecting factors, adsorption isotherms and thermodynamics of Cu2+ by the developed porous geopolymer were investigated.The experimental results uncover that the porous amorphous geopolymer was successful synthesized with total porosity of 74.6%. The transformation of fly ash and IOT into foaming geopolymer leads to the formation of porous structure encouraging Cu2+ sorption. Batch sorption tests were carried out and geopolymer dosage, Cu2+ initial concentration, pH, contact time and temperature were the main concern. Both Langmuir and Freundlich models could explain the adsorption of Cu2+ on the porous geopolymer due to the high fitting coefficients. The uptake capacity reaches the highest value of 113.41 mg/g at 40 °C with pH value of 6.0. The thermodynamic parameters ΔHº, ΔSº and ΔGº suggests the spontaneous nature of Cu2+ adsorption on porous geopolymer and the endothermic behavior of sorption process.  相似文献   

19.
《Ceramics International》2022,48(12):16562-16575
The flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.  相似文献   

20.
《Ceramics International》2022,48(18):26519-26538
To minimize the utilization of natural resources & consuming of huge energy and in order to control the global warming, industrial waste based geopolymer has attracted by the researchers. The manufacturing of GGBS-FA based Geopolymer Concrete (GFGPC) are essential due to its cost-effective reuse by recycling the industrial wastes. The impact of various quantities of Ground Granulated Blast-furnace Slag (GGBS), activator concentration, alkaline solution to solid ratios and liquid ratios of silicate to hydroxide of sodium on experimented mechanical strength and microstructural characterization are investigated. The novelty and research significance lie in adoption of ambient curing techniques, reduced time interval between Alkali Activator Solution (AAS) preparation and concrete casting from 24 h to 3–6. It was observed that with decrease of GGBS content from 70% to 30%, compressive strength at 28 days was reduced from 53 MPa to 36 MPa. A mix containing 40–50% GGBS, AAS to binder ratio of 0.45–0.55, 7 M(Molar) solution of Sodium Hydroxide (SH), ratio of sodium silicate (SS) to sodium hydroxide (SH) of 1.5–2.0 along with 3–6 h of time interval between AAS preparation and concrete casting were proposed as an optimum design mix with respect to compressive strength, workability and setting time. The empirical predictions of splitting-tensile strength and flexural strength of developed GFGPC were made based on the experimental laboratory results and made comparisons with respect to the equations of ACI 318, Eurocode 2, AS 3600 and IS 456 for OPC based conventional concrete (CCOPC) and others existing literature for GPC. Additionally, XRF, XRD, FESEM and EDS were conducted to investigate the microstructural properties and the reaction mechanism of GFGPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号