首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissimilar AA6061 and AA7075 alloy have been friction stir welded with a variety of different process parameters. In particular, the effects of materials position and welding speed on the material flow, microstructure, microhardness distribution and tensile property of the joints were investigated. It was revealed that the material mixing is much more effective when AA6061 alloy was located on the advancing side and multiple vortexes centers formed vertically in the nugget. Three distinct zones with different extents of materials intercalations were identified and the formation mechanism of the three zones was then discussed. Grain refinement was observed in all three layers across the nugget zone with smaller grains in AA7075 Al layers. All the obtained joints fractured in the heat-affected zone on the AA6061 Al side during tensile testing, which corresponds very well to the minimum values in microhardness profiles. It was found that the tensile strength of the dissimilar joints increases with decreasing heat input. The highest joint strength was obtained when welding was conducted with highest welding speed and AA6061 Al plates were fixed on the advancing side. To facilitate the interpretation, the temperature history profiles in the HAZ and at zones close to TMAZ were also measured using thermocouple and simulated using a three-dimensional computational model.  相似文献   

2.
Similar and dissimilar friction stir welded joints made from AA2124+25 % SiC and AA2024 An aluminium matrix composite (AMC) consisting of an AA2124 matrix reinforced by 25 vol.% SiC particles was used to produce similar AMC+AMC and dissimilar AMC+2024‐T3 joints by friction stir welding. When the particle reinforced composite was located on the retreating side, material mixing was less intense for dissimilar joints. Nevertheless, a higher strength has been determined for this arrangement due to a hook‐like interlocking of both materials. Tensile test and S‐N fatigue behaviour is shown to be compromised by alignment of the reinforcement particles perpendicular to loading direction already in the particle reinforced base material. Welding residual stresses were determined through the cut‐compliance method in terms of stress intensities acting at the crack tip. The underlying residual stress distribution in the un‐cracked structure was calculated by the weight function method. Longitudinal tensile residual stresses were found to be higher in the monolithic material as compared to the particle reinforced composite. This held true both for similar and within dissimilar joints. Growth behaviour of cracks crossing the joint line was described and correlated with residual stresses for similar joints.  相似文献   

3.
6005A-T6 aluminum alloy is welded by stationary shoulder friction stir welding (SSFSW). At a constant rotational velocity of 2000 rpm, the effect of welding speed on mechanical properties of SSFSW joint are investigated in detail. Defect-free joint with gloss surface and small flash is attained and no cracks appear at the bending angle of 180°. Compared with traditional friction stir welding (FSW), width of rotational shoulder affected zone is relatively small because of the smaller diameter of rotational shoulder. Increasing welding speed is benefit for reducing the width of softening region and the softening degree. The fracture position of welding joint locates in thermo-mechanically affected zone and the fracture surface morphology presents the typical ductile fracture. The maximum tensile strength of joint at the welding speed of 400 mm/min reaches 82% of base metal (BM).  相似文献   

4.
目的 建立搅拌摩擦焊接工艺参数与焊接接头抗拉强度之间关系的响应曲面模型,并依此模型研究焊接工艺参数变化对接头抗拉强度所产生的影响,得到最佳工艺参数,提高焊接接头强度。方法 以5052-H112铝合金为研究对象,基于响应面法优化设计试验方法,以转速、焊接速度、轴肩压入深度为因素,焊接接头的抗拉强度为响应值设计试验,建立对应的响应函数与回归模型,对模型进行方差分析,根据模型得到最佳工艺参数值,并与试验结果作比较。结果 成功建立了响应模型,在分析模型和试验验证后发现,在选定的工艺参数范围内,当转速为737 r/min、焊接速度为60 mm/min、轴肩压入深度为0.3mm时,接头抗拉强度达到最优值227MPa。结论 通过响应面分析得到,转速和焊接速度对抗拉强度的影响最大,且两者交互作用显著,在给定范围内随着转速和焊接速度的提高,抗拉强度增大至峰值后下降,轴肩压入深度单独对接头抗拉强度的影响较小,其与转速交互影响显著。通过响应曲面法优化后的焊接工艺参数明显提高了5052-H112铝合金搅拌摩擦焊焊接头抗拉强度。  相似文献   

5.
The joining of dissimilar Al–Cu alloy AA2219-T87 and Al–Mg alloy AA5083-H321 plates was carried out using friction stir welding (FSW) technique and the process parameters were optimized using Taguchi L16 orthogonal design of experiments. The rotational speed, transverse speed, tool geometry and ratio between tool shoulder diameter and pin diameter were the parameters taken into consideration. The optimum process parameters were determined with reference to tensile strength of the joint. The predicted optimal value of tensile strength was confirmed by conducting the confirmation run using optimum parameters. This study shows that defect free, high efficiency welded joints can be produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties. Analysis of variance showed that the ratio between tool shoulder diameter and pin diameter is the most dominant factor in deciding the joint soundness while pin geometry and welding speed also played significant roles. Microstructural studies revealed that the material placed on the advancing side dominates the nugget region. Hardness studies revealed that the lowest hardness in the weldment occurred in the heat-affected zone on alloy of 5083 side, where tensile failures were observed to take place.  相似文献   

6.
2A12铝合金筋板件T型搅拌摩擦焊工艺及焊后热处理   总被引:3,自引:2,他引:1  
为评价2A12铝合金筋板件搅拌摩擦焊工艺并探寻提高接头强度的途径,进行了2A12铝合金筋板件的T型搅拌摩擦焊焊接工艺试验,并对不同人工时效热处理下焊接接头的微观组织及性能进行了研究.研究表明:采用T型搅拌摩擦焊即可实现2A12铝合金筋板件的成形,当搅拌头旋转速度为750 r/min、焊接速度60mm/min时,接头的抗...  相似文献   

7.
Using the same type of injection moulded specimen, uniaxial and rotating bending fatigue tests have been carried out and the results compared. In each type of testing conventional fatigue or thermal softening failures occurred depending on the loading conditions. Much higher cyclic frequencies could be used in rotating bending without causing thermal softening failure. Injection moulding produces a skin at the surface of the specimens which is more resistant to fatigue crack initiation than the internal structure. Since the maximum stress in bending is at the surface, the skin effect contributes to the much larger fatigue endurances observed in rotating bending. A sharp V-notch, a diametral hole or a moulded weld line in the specimens reduced endurances in both types of fatigue loading to various extents.  相似文献   

8.
Reverse dual-rotation friction stir welding (RDR-FSW) has great potential to obtain appropriate welding conditions through adjusting the independently rotating tool pin and surrounding shoulder. The welding torque exerted on the workpiece by the reversely rotating shoulder also cancels off a part of the welding torque exerted by the rotating tool pin, thus the clamping requirement for the workpiece is also reduced. In the present paper, a tool system for the RDR-FSW was designed and successfully applied to weld high strength aluminum alloy 2219-T6, and then microstructures and mechanical properties of the optimized joint were investigated to demonstrate the RDR-FSW characteristics. The weld nugget zone was characterized by the homogeneity of refined grain structures, but there was a three-phase confluction on the advancing side formed by different grain structures from three different zones. The tensile strength of the optimized joint was 328 MPa (73.7% of the base material), showing an obvious improvement when compared with the optimized joint welded by the FSW without the reversely rotating assisted shoulder. The tensile fracture occurred in the ductile fracture mode and the fracture path propagated in the weakest region where the Vickers hardness is the minimum.  相似文献   

9.
Friction stir welding for the transportation industries   总被引:34,自引:0,他引:34  
This paper will focus on the relatively new joining technology—friction stir welding (FSW). Like all friction welding variants, the FSW process is carried out in the solid-phase. Generically solid-phase welding is one of the oldest forms of metallurgical joining processes known to man. Friction stir welding is a continuous hot shear autogenous process involving a non-consumable rotating probe of harder material than the substrate itself. In addition, FSW produces solid-phase, low distortion, good appearance welds at relatively low cost. Essentially, a portion of a specially shaped rotating tool is plunged between the abutting faces of the joint. Once entered into the weld, relative motion between the rotating tool and the substrate generates frictional heat that creates a plasticised region around the immersed portion of the tool. The contacting surface of the shouldered region of the tool and the workpiece top contacting surface also generates frictional heat. The shouldered region provides additional friction treatment to the weld region as well as preventing plasticised material being expelled. The tool is then translated with respect to the workpiece along the joint line, with the plasticised material coalescing behind the tool to form a solid-phase joint as the tool moves forward. Although the workpiece does heat up during FSW, the temperature does not reach the melting point. Friction stir welding can be used to join most aluminium alloys, and surface oxide presents no difficulty to the process. Trials undertaken up to the present time show that a number of light weight materials suitable for the automotive, rail, marine, and aerospace transportation industries can be fabricated by FSW.  相似文献   

10.
A study was made of the effect of deformed metal volume on the fatigue strength of structurally unstable austenitic steels in rotating bending. It was shown that the fatigue strength of steel depends not only on the statistical factor, but also on the kinetic factor and on the ratio of the intensities of processes leading to a loss and an increase in strength during continuous loading of material volumes of different magnitude.  相似文献   

11.
目的 研究5083铝合金搅拌摩擦焊接(FSW)的组织、力学性能和拉伸应变,分析接头的拉伸行为。方法 采用数码相机、光学显微镜、电子扫描显微镜等表征分析方法,对焊缝的表面宏观成形、微观组织、断口形貌进行分析;利用拉伸机、三维数字动态散斑应变测量分析系统和显微维氏硬度计对接头的力学性能和拉伸应变进行测试。结果 不同焊接工艺参数下FSW接头的最低抗拉强度为305 MPa,断后延伸率达到了14%以上;焊核区拉伸应变沿板厚方向呈现上高下低和上宽下窄的不均匀梯度分布,发生了较大程度的变形强化,直到拉伸应力达到抗拉强度。断裂失效前300/120接头的最大拉伸应变在晶粒粗大的母材区,500/120和500/200接头的最大拉伸应变则位于晶粒尺寸差异较大的后退侧焊核区与热力影响区交界处。接头拉伸断口宏观上均为45°剪切韧性断裂,微观上均以韧窝韧性断裂为主,而高热输入500/120接头出现脆性断裂特征,其延伸率明显降低。结论 高热力耦合输入使铝合金FSW接头薄弱区发生转变,强韧性降低。  相似文献   

12.
Abstract—The low cycle fatigue (LCF) behavior of two aluminum-lithium alloys was investigated. Efforts were aimed at understanding the effects of microstructure on the cyclic stress-strain behavior and methods by which different microstructures accommodate plastic strain. These goals were achieved by analyzing the cyclic response and the deformed microstructure of each alloy. Direct-chill cast and rolled X2095 exhibited immediate cyclic softening followed by a plateau region. Strain was distributed in a homogeneous manner throughout the microstructure. Mechanically alloyed and forged AA5091 (formerly referred to as 905XL) also deformed in a homogeneous manner, but the cyclic response was characterized by initial softening followed by gradual hardening. Over-strain loops were applied during some of the LCF tests, the purpose of which was to simulate the strain history of the material ahead of a growing fatigue crack during a tensile overload. The over-strain response suggested that the intrinsic material response does not contribute to crack retardation in X2095 or AA5091.  相似文献   

13.
对6005A-T6铝合金挤压型材进行焊速为1000 mm/min的搅拌摩擦高焊速焊接,研究了对接面机械打磨对接头组织和力学性能的影响.结果 表明,与生产中常用的焊前打磨处理相比,尽管对接面未机械打磨的接头焊核区的"S"线更明显,但是两种接头的硬度分布和拉伸性能相当,拉伸时都在最低硬度区即热影响区断裂.高周疲劳实验结果表...  相似文献   

14.
Aluminum alloys and high density polyethylene are utilized in a wide variety of industrial applications. In the present work the feasibility of friction stir butt welding between AA5059 alloy and high density polyethylene sheets is examined. The bonding mechanism, joint strength, and microhardness are considered in this study. Various welding parameters and tool alignment were investigated until sound joints were achieved by positioning approximately 85% of the rotating tool in the aluminum material on the advancing side (1.4 mm offset) at constant spindle speed and traverse speed of 710 rpm and 63 mm/min, respectively. The results indicate that AA5059 aluminum and high density polyethylene sheets can be successfully joined with a combination of secondary bonding and mechanical interlocking of the materials, which provides a potential alternative to adhesive bonding or mechanical fastening.  相似文献   

15.
3-mm-thick 5083Al-H19 rolled plates were friction stir welded(FSW) at tool rotation rates of 800 and200 rpm with and without additional water cooling. With decreasing the rotation rate and applying water cooling, softening in the FSW joint was significantly reduced. At a low rotation rate of 200 rpm with additional water cooling, almost no obvious softening was observed in the FSW joint, and therefore a FSW5083Al-H19 joint with nearly equal strength to the base material(BM) was obtained. Furthermore, the grains in the nugget zone were considerably refined with reducing the heat input and ultrafine equiaxed grains of about 800 nm were obtained in the lowest heat input condition. This work provides an effective method to achieve high property FSW joints of precipitate-hardened and work-hardened Al alloys.  相似文献   

16.
Microstructural effect on the wear behaviour of the hard‐anodised aluminium alloys EN AW‐6082 and EN AW‐7075 The suitability of hard‐anodising of high‐strength Al alloys (EN AW‐7075‐T651) for the fabrication of protective coatings which are also applicable on screws was investigated. A medium‐strength AlSi1MgMn alloy (AA60682‐T6), generally rated as applicable for anodising, was used as reference material. After possible setting phenomena of a screw joint, the load‐bearing surface of the screw can be subjected to an oscillating relative movement. The damaging tribological load was simulated in an oscillation wear test. The resulting wear appearances have revealed that the untreated oxide coatings on the EN AW‐6082 substrate are not capable of providing protection against tribological load. Since hot‐water sealing increases the hardness of the coating but also contains the technology‐induced risk of softening the substrate material, other tribological protection methods have been looked for. The analysis of the tribological tests (characterisation of the structure and the resulting properties of the material, measurement of the wear amount and analysis of the wear appearance) have shown that the films sealed with wax emulsion on both substrate materials are the most promising candidates for the application of devices under oscillation wear. The obtained roughness, friction coefficients and hardness values confirm the positive behaviour of the anodically oxidised EN AW‐7075‐T651 alloy under the chosen tribological load.  相似文献   

17.
This work investigates the influence of friction stir welding parameters on the mechanical properties of the dissimilar joint between AA2024-T3 and AA7075-T6. Experiments are conducted consistent with the three-level face-centered composite design. Response surface methodology is used to develop the regression model for predicting the tensile strength of the joints. The analysis of variance technique is used to access the adequacy of the developed model. The model is used to study the effect of key operating process parameters namely, tool rotation speed, welding speed and shoulder diameter on the tensile strength of the joints. The results indicate that friction stir welding of aluminum alloys at a tool rotation speed of 1050 min−1, welding speed of 40 mm/min and a shoulder diameter of 17.5 mm would produce defect less joint with high tensile strength.  相似文献   

18.
Friction Stir Weldabilities of AA1050-H24 and AA6061-T6 Aluminum Alloys   总被引:1,自引:0,他引:1  
The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) T  相似文献   

19.
Friction welding process is a solid state joining process that produces a weld under the compressive force contact of one rotating and one stationary work piece. In this study, the friction welding of dissimilar joints of AISI 316L stainless steel and cp-titanium is considered. The optical, scanning electron microscopy studies of the weld were carried out. Moreover, the X-ray diffraction analysis was performed. The integrity of welds was achieved by the micro hardness and tensile tests. The fracture surface was examined by the scanning electron microscopy. The study showed that the magnitude of tensile strength of the dissimilar welded specimen was below that of the titanium base material if preheating was not applied at the interface. The high weld tensile strength was achieved by preheating the 316L stainless steel material to 700 °C, smoothing and cleaning of the contact surfaces. Results illustrated that in dissimilar joints, different phases and intermetallic compounds such as FeTi, Fe2Ti, Fe2Ti4O, Cr2Ti and sigma titanium phase were produced at the interface. The presence of brittle intermetallic compounds at the interface resulted in degradation of mechanical strength which in turn led to premature failure of joint interface in the service condition. Preheating caused to produce oxide layer at the interface which was harmful for bonding. The oxide layer could be eliminated by applying pressure and smoothing the surface. Results of hardness tests illustrated that the high hardness was occurred in the titanium side adjacent to the joint interface. Moreover, the optimum operational parameters were obtained in order to achieve the weld tensile strength greater than the weak titanium material.  相似文献   

20.
H. Yuan 《Materials Letters》2008,62(25):4085-4087
The tensile properties of cold rolled sheets were measured for the hot band and annealed hot band of AA 5052 aluminum alloy. The variation in yield strength with rolling true strain was used to represent the hardening rate of cold rolled sheets. The Taylor factor (M?) of cold rolled sheets in tension along the rolling direction was calculated based on the measured orientation distribution functions. The strain hardening and orientation hardening/softening produced by cold deformation were analyzed. The results show that the contribution to the hardening rate of cold rolled sheets comes largely from the deformed microstructure and partly from the texture change. For the annealed hot band the orientation softening occurs at strains below 0.5, while the orientation hardening occurs at strains over 0.5. For the hot band the dM?/dε value is always positive, indicating that orientation softening does not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号