首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ti–30Zr–5Al–3V (wt.%, TZAV-30) alloy having good mechanical properties is a potential structural material to apply in the aerospace industry. The microstructure and mechanical properties of ZTAV-30 alloy underwent various annealing heat treatments were investigated. The specimens annealed from 500 to 800 °C are composed of α and β two phases. No compound is detected in specimens annealed in that temperature range. The microstructure of annealed specimens is characterized as a typical basketweave microstructure. Three microstructural parameters, thickness of plate α phase, relative fraction of β phase and aspect ratio of α grains, were measured in those annealed specimens. As the alloy annealed in the range from 500 to 800 °C, the average thickness of plate α grains increases with the increasing annealing temperature from 500 to 700 °C but decreases while annealed at 800 °C. The fraction of retained β phase increases with annealing temperature. And the aspect ratio of plate α grains decreases firstly but increases while the annealing temperature is higher than 700 °C. As the variation of those three microstructural parameters, the strength of examined alloy varies from 1269 to 1355 MPa for tensile strength and from 1101 to 1190 MPa for yield strength, inversely, the elongation changes in the range from 12.7% to 8.4%. The strengthening and toughening mechanism of the TZAV-30 alloy with basketweave microstructure is also discussed in this paper.  相似文献   

2.
This is the first reported research into the tensile behavior of as-deformed Al–Zn–Mg–Cu alloy in the semi-solid state. Tensile tests of extruded 7075 aluminium alloy were carried out in the high temperature solid and semi-solid states. Based on the tensile results and microstructural examination, the tensile behavior can be divided into three stages according to the effect of liquid: one behaves in predominantly ductile character between 400 and about 520 °C (fl  0.31%), one is governed by both of solid and liquid between 520 and 550 °C (fl  2%), and almost completely dominated by liquid above ∼550 °C. A brittle temperature range (519–550 °C) is proposed, in which the as-deformed Al–Zn–Mg–Cu alloy exhibits large crack probability. An equation based on ultimate tensile stress and temperature is proposed.  相似文献   

3.
The Mg–7Y–4Gd–1Zn (wt.%) alloy was prepared by hot extrusion technology, and the microstructure, tensile properties and superplastic behavior have been investigated. The extruded alloy possesses high tensile strength both at room temperature and 250 °C, and especially the yield strength can remain above 300 MPa at 250 °C. The outstanding microstructure, i.e. bent 18R long period stacking ordered (LPSO) strips and dynamic recrystallization (DRX) Mg grains containing fine lamellae with 14H LPSO or stacking fault structures, is responsible for the excellent mechanical properties, and it is considered that the integrated performance can be further improved by controlling the size of LPSO phase. The alloy shows the maximum elongation of 700% at 470 °C and 1.7 × 10−4 s−1. The predominant superplastic mechanism is considered to be grain boundary sliding assisted by lattice diffusion. The fracture of superplastic deformation is related to the microstructure evolution, i.e. the disappearance of LPSO phase and the formation of cubic phase. Both high temperature and stress contribute to the phase transformation.  相似文献   

4.
The effect of equivalent rolling strain and temperature on the microstructural evolution and mechanical properties of 7075-T7351 aluminum alloy has been studied. This has been carried out using tensile testing method. The results indicated that the predominant restoration process during rolling at 250 and 350 °C is dynamic recovery, and the driving force is not high enough to trigger the dynamic recrystallization. However, the recrystallized grains are clearly evident in the microstructure of the specimens which were rolled at 450 °C. The tensile test results showed that the room temperature strength and ductility were decreased by increasing rolling temperature in the temperature range of 250–350 °C. The room temperature mechanical properties of the alloy were started to improve by increasing the temperature up to 450 °C. The observed trends were explained through considering the microstructural evolution upon hot rolling.  相似文献   

5.
In this study the high temperature tensile deformation behavior of a commercial Al–Si–Cu–Mg cast alloy was investigated. The alloy was cast with two different cooling rates which resulted in average secondary dendrite arm spacing of 10 and 25 μm, which is typical of the microstructure scale obtained from high pressure die casting and gravity die casting. Tensile tests were performed at different strain rates (10 4 s 1 to 10 1 s 1) and over a wide temperature range from ambient temperature to 500 °C. The fine microstructure had superior tensile strength and ductility compared to the coarse microstructure at any given temperature. The coarse microstructure showed brittle fracture up to 300 °C; the fracture mode in the fine microstructure was fully ductile above 200 °C. The fraction of damaged particles was increased by raising the temperature and/or by microstructure coarsening. Cracks arising from damaged particles in the coarse microstructure were linked in a transgranular-dominated fashion even at 500 °C. However, in the fine microstructure alloy the inter-dendritic fracture path was more prevalent. When the temperature was raised to 300 °C, the concentration of alloying elements in the dendrites changed. The dissolution rates of Cu- and Mg-bearing phases were higher in the fine microstructure.  相似文献   

6.
For the first stage, a metastable β titanium alloy, Ti–3.5Al–5Mo–4V–2Cr–2Sn–2Zr–1Fe reinforced with trace amounts of TiB whiskers and TiC particles was fabricated by vacuum arc melting process and hot forging followed by heat treatment at 780 °C/740 °C, then by aging at 500 °C, 550 °C, 570 °C and 600 °C. For the second stage, the unreinforced titanium alloy was also fabricated by the same process. The microstructural characteristics were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Traces of TiB whiskers and TiC particles (2.2 vol.%) with a volume ratio of 2:3 synthesized in situ exerted a hybrid reinforcing effect on the β titanium alloy. The reinforcements were uniformly distributed in the matrix and the elastic modulus was improved about 25 GPa. Ultimate tensile strength and yield strength achieves about 1625 MPa and 1500MPa respectively, with ductility at 7% when the aging temperature is 500 °C. The ductility of (TiB + TiC)/(Ti–3.5Al–5Mo–4 V–2Cr–2Sn–2Zr–1Fe) matrix composite could be enhanced by increasing the aging temperatures. After 780 °C followed by aging at 570 °C, excellent strength and plasticity properties were obtained (ultimate tensile strength of matrix alloy is 1350 MPa with elongation of 18% and ultimate tensile strength of composite is 1500 MPa with elongation of 13%).  相似文献   

7.
GH984G alloy is a low cost Ni–Fe based wrought superalloy designed for 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. In this paper, the microstructure evolution and tensile properties of GH984G alloy with different Ti/Al ratios during thermal exposure at different high temperatures are investigated. Detailed microstructure analysis reveals that the Microstructure of alloys with different Ti/Al ratios are similar after standard heat treatment, and the primary precipitates are γ′, MC, M23C6 and M2B. However, η phase precipitates at grain boundary in the alloy with high Ti/Al ratio after thermal exposure at 750 °C for 570 h. By contrast, the microstructure stability of the alloy with lower Ti/Al ratio is excellent. There is no detrimental phase even if after thermal exposure at 750 °C for 5000 h in the alloy with lower Ti/Al ratio. γ′ coarsening plays a great role on the tensile strength, and the critical size range of γ′ could be defined as approximately 27–40 nm. The influence of η phase on tensile strength has close relationship with its volume fraction, the high volume fraction results in the decrease of tensile strength. The tensile strength of the alloy with lower Ti/Al ratio is obviously higher than the alloy with higher Ti/Al ratio and the yield strength has no obvious decrease during long-term thermal exposure at 700 °C. It is demonstrated that the thermal stability of microstructure and mechanical properties of GH984G alloy can be improved by moderately decreasing Ti/Al ratio to satisfy the requirement of A-USC plants.  相似文献   

8.
This study deals with the microstructural aspects of the deformation behavior in Al–Si–Cu alloy A380. This has been carried out with in-situ tensile testing coupled with EBSD analysis. The alloy specimens having different microstructures with two different secondary dendrite arm spacing (SDAS) of 9 μm and 27 μm were produced by the unique gradient solidification method. The study of misorientation distribution and texture evolution was performed with different tools in EBSD analysis. The texture was not significantly affected by deformation in both types of alloy specimens. With increase in the deformation, the microstructures are characterized by degradation of EBSD patterns and generation of substructures including low angle boundaries (LABs) and high angle boundaries (HABs). In both the microstructures with low and high SDAS, the boundaries were concentrated around eutectic phases; however this behavior was more pronounced at higher SDAS. The increase in the fraction of LABs with deformation was much higher in the microstructure with higher SDAS than with lower SDAS. This localized strain concentration was especially attributed to the large and elongated eutectic Si particles and Fe-rich intermetallics. The lower mechanical properties obtained at higher SDAS are the result of inhomogeneous strain distribution in the microstructure.  相似文献   

9.
Mechanical behavior of hot rolled Mg–3Sn–1Ca (TX31) magnesium alloy sheets were studied in the temperature range 25–350 °C. The microstructure of the alloy consisted of the eutectic structure of α-Mg + Mg2Sn and a dispersion of needle-like CaMgSn. The highest room-temperature ductility of 18% was obtained by hot rolling of the cast slabs at 440 °C, followed by annealing at 420 °C. The high temperature tensile deformation of the material was characterized by a decrease in work hardening exponent (n) and an increase in strain rate sensitivity index (m). These variations resulted in respective drops of proof stress and tensile strength from 126.5 MPa and 220 MPa at room temperature to 23.5 MPa and 29 MPa at 350 °C. This was in contrast to the ductility of the alloy which increased from 18% at room temperature to 56% at 350 °C. The observed variations in strength and ductility were ascribed to the activity of non-basal slip systems and dynamic recovery at high temperatures. The TX31 alloy showed lower strength than AZ31 magnesium alloy at low temperatures, while it exhibited superior strength at temperatures higher than 200 °C, mainly due to the presence of thermally stable CaMgSn particles.  相似文献   

10.
In the present work, the influence of heating aging treatment (HAT) on the microstructure and mechanical properties of Al–Zn–Mg–Cu alloy was investigated. When the final aging temperature (FAT) was lower than 180 °C, the hardness increased with the decreasing of heating rate, however, in the case of the FAT was higher than 180 °C, the variation of hardness was opposite. The electrical conductivity of Al–Zn–Mg–Cu alloy increased with the decrease of heating rate regardless of FAT. The tensile strength, yield strength and conductivity of the Al alloy after (100–180 °C, 20 °C/h) HAT increased by 1.6%, 4.5% and 14.1% than that after T6 treatment, respectively. The precipitates sequence of HAT was coincident with that of isothermal aging, which is SSS  GP zone  η  η. With the increase of FAT and the decrease of heating rate, the fine precipitates became larger and the continuous η phase at grain boundary grew to be individual large precipitates. The HAT time was decreased about 80% than that for T6 treatment, indicating HAT could improve the mechanical properties, corrosion resistance and production efficiency with less energy consumption.  相似文献   

11.
The Mg–8Y–1Er–2Zn (wt.%) alloy with high strength, plasticity and heat-resistance was prepared by the hot extrusion technique and the following aging treatment. The microstructure and mechanical properties were investigated. The results show that long period stacking ordered (LPSO) phase is different from common inermetallics, and the former can be bent by plastic deformation and presents good combination with the Mg matrix. The good mechanical properties of as-extruded alloy are mainly attributed to the lamellar strips with 18R LPSO structure as well as the microstructure refinement. Aging treatment at 220 °C can further improve the strength but not at the expense of plasticity. The ultimate tensile strength (UTS) and elongation to failure (ε) of as-extruded alloy at peak hardness are 390 MPa and 18% at room temperature, and 322 MPa and 30% at 250 °C, respectively. The formation of fine α-Mg recrystallization grains with high number density of 14H LPSO structure is mainly responsible for the superior mechanical properties of extruded alloy after peak-aging.  相似文献   

12.
In this paper, a new magnesium alloy Mg–12Zn–4Al–0.5Ca (ZAX12405) was prepared by squeeze casting. The effects of processing parameters including applied pressure, pouring temperature and dwell time on the microstructure and mechanical properties of squeeze-cast ZAX12405 alloy were investigated. It was found that squeeze-cast ZAX12405 alloy exhibited finer microstructure and much better mechanical properties than gravity casting alloy. Increasing the applied pressure led to significant cast densification and a certain extent of grain refinement in the microstructure, along with obvious promotion in mechanical properties. Lowering the pouring temperature refined the microstructure of ZAX12405 alloy, but deteriorated the cast densification, resulting in that the mechanical properties firstly increased and then decreased. Increasing the dwell time promoted cast densification and mechanical properties just before the solidification process ended. A combination of highest applied pressure (120 MPa), medium pouring temperature (650 °C) and dwell time (30 s) brought the highest mechanical properties, under which the ultimate tensile strength (UTS), yield strength (YS) and elongation to failure (Ef) of the alloy reached 211 MPa, 113 MPa and 5.2% at room temperature. Comparing with the gravity casting ZAX12405 alloy, the UTS and Ef increased 40% and 300%, respectively. For squeeze-cast Mg–12Zn–4Al–0.5Ca alloy, cast densification was considered more important than microstructure refinement for the promotion of mechanical properties.  相似文献   

13.
This paper characterizes the microstructure and mechanical properties of a nickel-based superalloy with a nominal composition of Ni–25Mo–8Cr (wt.%) after long-term exposures to elevated temperatures. The alloy is strengthened by long-range-ordered precipitates of an oI6 metastable phase with the Ni2(Mo,Cr) stoichiometry. The alloy was annealed at 650 °C for 1000, 2000 and 4000 h, after it had been plastically deformed in order to accelerate diffusion processes occurring at elevated temperature and consequently to ease the formation of stable phases. The microstructure was characterized using TEM, SEM and X-ray phase analyses; mechanical properties were measured in tensile tests.It has been determined that the alloy loses its phase stability upon plastic deformation and subsequent long-term annealing at 650 °C. The microstructure, composed initially of a dispersed Ni2(Mo,Cr) strengthening phase in a Ni-based solid solution, decomposes during annealing into a mixture of Ni3Mo- and Ni4Mo-type phases, Mo-lean Ni-based solid solution and a complex intermetallic P phase. The dominant new phase is a plate-shaped Ni3Mo-type phase while the P phase appears as singular small precipitates. The Ni3Mo phase is formed mainly in regions of highly localized deformation, e.g., in shear bands, and only occasionally nucleates in regions where the deformation was relatively uniform (dislocations or twins in one system). Regions adjacent to the plates of the Ni3Mo phase are recrystallized and free from an Ni2(Mo,Cr) strengthening phase. Changes in microstructure of the deformed alloy during long time annealing at 650 °C result in the decrease in the yield strength as well as tensile elongation at both room temperature and 650 °C. A significant decrease in elongation at 650 °C occurs only in specimens tested in air but not those tested in vacuum.  相似文献   

14.
The deformation behavior of Ni76Cr19AlTiCo has been investigated under compressive strains by up to 50% at temperatures ranging from 800 °C to 1150 °C, and at strain rates from 0.001 s−1 to 1 s−1. A dramatic change in the mechanical properties of the alloy was observed when the temperature was increased from 850 °C to 950 °C, along with a rapid increase in grain size with increasing the temperature. Recovery and recrystallization processes occurred under deformation at temperatures above 950 °C. The degree of recrystallization was found to increase with increasing temperature or decreasing strain rate. γ′-phase precipitation occurred in the matrix and the particle sizes and the number of the precipitated phases were found to increase with increasing temperature or decreasing strain rate. Grain boundary precipitation of chromium carbides has also been observed, but its influence was negligible because of the small amount of the precipitates present in the matrix.A modified Hall–Petch equation was proposed to predict the mechanical properties of the alloy based on grain growth and microstructure evolution.  相似文献   

15.
The novel technology combining hot forming and quenching together has been developed to improve formability and avoid thermal distortion for heat-treatable aluminum alloy forming. In this paper, cold–hot composite dies are proposed to use in hot forming–quenching integrated process. Heated lower dies are used to avoid rapid temperature decrease of heated sheet. Water-cooled upper dies are then used to accomplish quenching and reduce thermal distortion. The effects of temperature of lower dies, quenching condition and precipitate distribution on strengthening behavior in this process were investigated systematically. The strengths were measured by Vickers hardness and uniaxial tensile tests. It was found that the upper cold dies could ensure effective quenching. Lower dies could be heated to avoid rapid temperature decrease of heated sheet resulting in good strength of parts. The corresponding hardness, yield and tensile strengths were 140.7 HV, 295.7 and 469.2 MPa, respectively. For comparison, the process with both hot dies at temperatures ranging from 100 to 350 °C was investigated. The temperature of both hot dies could only be improved to 250 °C, otherwise the strength decreased. The strengthening phase was dispersed lath-shaped S phase with an average cross-section of approximately 50 × 100 nm, which was observed with TEM and SEM methods.  相似文献   

16.
We developed new wrought Mg–2Sn–1Ca wt.% (TX21) and Mg–2Sn–1Ca–2Zn wt.% (TXZ212) alloys with high strength and ductility simultaneously, produced by conventional casting, homogenization and indirect extrusion. A partial dynamically recrystallized microstructure, with the micron-/nano-MgSnCa particles and G.P. zones dispersing, was obtained in TX21 alloy extruded at 260 °C (TX21-260). The TX21-260 alloy exhibited yield strength (YS) of 269 MPa, ultimate tensile strength (UTS) of 305 MPa, while those of the TX21 alloy extruded at 300 °C decreased to be 207 MPa and 230 MPa respectively. For TXZ212-260 alloy, on the other hand, MgSnCa, MgZnCa and MgZn2 phases were observed, and the average grain size increased to be ∼5 μm. The YS and UTS of TXZ212-260 alloy evolved to be 218 MPa and 285 MPa, and the elongation (EL) reached as high as 23%. The high strengths of TX21-260 alloy were expected due to the high number density of nano-MgSnCa phases, G.P. zones and ultra-fine grain size (∼0.8 μm). The high EL of 23% in TXZ212-260 alloy was consistent with the high work-hardening rate, which was attributed to the larger grain size, more high angular grain boundaries, presence of more nano-particles and the weaker texture.  相似文献   

17.
Mechanical properties and creep resistance of the MgY4Zn1Mn1 alloy in the as cast as well as in the T5 condition were compared to those of the MgCe4Zn1Mn1 alloy in the same conditions. Yield tensile stress and ultimate tensile strength of the MgY4Zn1Mn1 alloy are slightly better in the temperature range 20 °C–400 °C than these of the MgCe4Zn1Mn1 alloy. Better thermal stability of ultimate tensile strength was observed in the T5 treated MgCe4Zn1Mn1 alloy than in this material in the as cast condition. An outstanding creep resistance at 225 °C–350 °C found in the MgY4Zn1Mn1 alloy is due to the existence of the 18R long period stacking structure persisting in this alloy even a long heat treatment of 500 °C/32 h. No similar stacking effects happen when Ce substitutes Y in approximately the same concentration. The creep resistance deteriorates considerably in the MgCe4Zn1Mn1 alloy. Rectangular particles of the equilibrium Mg12Ce phase dominate in the microstructure of as cast as well as of high temperature heat-treated MgCe4Zn1Mn1 alloy. A population of small oval particles containing Mg and Zn develops additionally during annealing of this alloy. These particles pin effectively dislocations and can be responsible for the better thermal stability of the T5 treated material.  相似文献   

18.
The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.  相似文献   

19.
The effects of air oxidation upon the kinetics and mechanical properties of ZrNbHf alloy were studied in the temperature range of 550–650 °C. The oxidation kinetics derived from the weight gain measurements showed a parabolic rate law and an oxidation breakdown behavior transforming from a parabolic to linear rate law observed at 650 °C. The microstructure analysis indicates that the oxide layer consists of both monoclinic and tetragonal ZrO2 and undergoes a transformation between t-ZrO2 and m-ZrO2 with increasing oxidation time, which is an important reason for kinetics transition. The mechanical property examination presents that the oxidation treatment brings about a nearly fourfold increase in the surface hardness with a protective thickness limit of 4–6 μm. Most interestingly, the hardened surface oxide layer brings about a nearly 70 MPa increase in yield strength and a slight decrease in tensile elongation under true stress–strain conditions. The present study reports on an optimized oxidation process designed to obtain a protective and hardened ZrO2 film for biomedical ZrNbHf alloy with higher performance.  相似文献   

20.
High temperature-resistant ductile cast irons behavior is highly interesting for the manufacture of components, such as exhaust manifolds for automotive applications. In the present paper the temperature-dependent static, high cycle and low cycle fatigue behavior of a heat-resistant Si–Mo–Cr ductile cast iron (Fe–2.4C–4.6Si–0.7Mo–1.2Cr) is investigated. Tensile and high cycle fatigue properties, in terms of elastic modulus, yield stress, elongation at break, fatigue limits, and the stress-life Basquin’s curve parameters have been determined at room temperature, 160 °C, 500 °C and 800 °C, thus covering the usual temperature range to which actual components, obtained with this kind of material, are subjected. The alloy showed good monotonic properties at low temperature, but showed to be fragile during fatigue tests, due to the high Silicon content in the alloy. At 500 °C mechanical properties are still good, with a 40% decrease with respect to 160 °C, and ductility is increased. The last temperature level of 800 °C has caused a noticeable drop of the cast iron strength, due to softening and oxidation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号