首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydroxyapatite (HA) and its based biomaterials could chemically bond directly to bone when implanted, resulting in the formation of a strong bone-implant interface. Carbon nanotubes (CNT) are believed to be very promising in the enhancement ceramic matrix and played an important role as reinforcement for imparting strength and toughness to brittle HA bioceramic. Here we demonstrate the potential use in reinforcing biomaterials through an attempt to use CNT strengthen brittle HA bioceramic. This work aims to study the optimum sintering conditions of CNT modified HA to get CNT–HA composite with improved mechanical properties using a rapid spark plasma sintering system. The microstructure, phases, chemical compositions and mechanical properties of the ceramic samples were characterized by various advanced methods. Though no obvious chemical reaction between CNT and HA has been detected, the physical crosslink caused by the presence of CNT resulted in that a CNT–HA composite with a relatively high value of modulus (~ 131.1 GPa) and hardness (~ 6.86 GPa) achieved at the sintering temperature of 1100 °C. In vitro cellular responses to the composites were assessed to investigate the proliferation and morphology of a human osteoblast cell line cultured on the various composites.  相似文献   

2.
We investigate dynamic fracture of three types of multiwalled carbon nanotube (MWCNT)/epoxy composites and neat epoxy under high strain-rate loading (105106 s−1). The composites include randomly dispersed, 1 wt%, functionalized and pristine CNT/epoxy composites, as well as laminated, ∼50 wt% CNT buckypaper/epoxy composites. The pristine and functionalized CNT composites demonstrate spall strength and fracture toughness slightly higher and lower than that of neat epoxy, respectively, and the spall strength of laminated CNT buckypaper/epoxy composites is considerably lower; both types of CNTs reduce the extent of damage. Pullout, sliding and immediate fracture modes are observed; the fracture mechanisms depend on the CNT–epoxy interface strength and fiber strength, and other microstructures such as the interface between CNT laminates. Compared to the functionalized CNT composites, weaker CNT–epoxy interface strength and higher fiber strength lead to a higher probability of sliding fracture and higher tensile strength in the pristine CNT composites at high strain rates. On the contrary, sliding fracture is more pronounced in the functionalized CNT composites under quasistatic loading, a manifestation of a loading-rate effect on fracture modes. Despite their helpful sliding fracture mode and large CNT content, the weak laminate–laminate interfaces play a detrimental role in fracture of the laminated CNT buckypaper/epoxy composites. Regardless of materials, increasing strain rates leads to pronounced rise in tensile strength and fracture toughness.  相似文献   

3.
The effect of thermally reduced graphene oxide (TRGO) on the electrical percolation threshold of multi wall carbon nanotube (MWCNT)/epoxy cured composites is studied along with their combined rheological/electrical behavior in their suspension state. In contrast to MWCNT and carbon black (CB) based epoxy composites, there is no prominent percolation threshold for the bi-filler (TRGO–MWCNT/epoxy) composite. Furthermore, the electrical conductivity of the bi-filler composite is two orders of magnitude lower (∼1 × 10−5 S/m) than the pristine MWCNT/epoxy composites (∼1 × 10−3 S/m). This result is primarily due to the strong interaction between TRGO and MWCNTs. Optical micrographs of the suspension and scanning electron micrographs of the cured composites indicate trapping of MWCNTs onto TRGO sheets. A morphological model describing this interaction is presented.  相似文献   

4.
The fracture energies of glass fibre composites with an anhydride-cured epoxy matrix modified using core–shell rubber (CSR) particles and silica nanoparticles were investigated. The quasi-isotropic laminates with a central 0°/0° ply interface were produced using resin infusion. Mode I fracture tests were performed, and scanning electron microscopy of the fracture surfaces was used to identify the toughening mechanisms.The composite toughness at initiation increased approximately linearly with increasing particle concentration, from 328 J/m2 for the control to 842 J/m2 with 15 wt% of CSR particles. All of the CSR particles cavitated, giving increased toughness by plastic void growth and shear yielding. However, the toughness of the silica-modified epoxies is lower as the literature shows that only 14% of the silica nanoparticles undergo debonding and void growth. The size of CSR particles had no influence on the composite toughness. The propagation toughness was dominated by the fibre toughening mechanisms, but the composites achieved full toughness transfer from the bulk.  相似文献   

5.
Polypropylene/aluminum–multi-walled carbon nanotube (PP/Al–CNT) composites were prepared by a twin-screw extruder. The morphology indicates that the CNTs are well embedded or implanted within Al-flakes rather than attached on the surface. During preparation of composites, the CNTs came apart from Al–CNT so that free CNTs as well as Al–CNT were observed in PP/Al–CNT composite. The crystallization temperatures of PP/CNT and PP/Al–CNT composites were increased from 111 °C for PP to 127 °C for the composites. The decomposition temperature increased by 55 °C for PP/CNT composite and 75 °C for PP/Al–CNT composite. The PP/Al–CNT composite showed higher thermal conductivity than PP/CNT and PP/Al-flake composites with increasing filler content. PP/Al–CNT composites showed the viscosity values between PP/CNT and PP/Al-flake composites. PP/Al–CNT composite showed higher tensile modulus and lower tensile strength with increasing filler content compared to PP/CNT and PP/Al-flake composites.  相似文献   

6.
《Composites Part A》2003,34(4):341-348
Bonded boron/epoxy repairs to aircraft can be susceptible to fatigue damage and crack propagation at high levels of in-service loading. In an effort to improve the fatigue tolerance of these repairs, an attempt has been made to improve the mode I fracture toughness. Two techniques for toughening boron/epoxy plies for use in bonded composite repairs were investigated. Firstly, the resin film infusion technique was used with dry boron fibres and the rubber-toughened film adhesive FM73 to produce a toughened boron/epoxy ply. The second technique involved co-curing a boron/epoxy laminate with FM73 adhesive. Bonded joints, comprising various toughened and un-toughened boron/epoxy adherends and FM73 adhesive, were made into fracture toughness specimens and tested. The fracture toughness for crack initiation increased from 328 J/m2 for the un-toughened specimens to 1600 and 3100 J/m2, respectively, for the two toughened specimens. The second technique, however, produced unstable fractures. Fractography revealed that the boron fibre-to-resin interface was the preferred failure path in all cases.  相似文献   

7.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

8.
Fibre reinforced composites have recently received much attention as potential bone fracture fixation applications. Bioresorbable composites based on poly lactic acid (PLA) and phosphate based glass fibre were investigated according to ion release, degradation, biocompatibility and mechanical retention profiles. The phosphate based glass fibres used in this study had the composition of 40P2O5–24MgO–16CaO–16Na2O–4Fe2O3 in mol% (P40). The degradation and ion release profiles for the composites showed similar trends with the amount of sodium and orthophosphate ions released being greater than the other cations and anions investigated. This was attributed to low Dietzal's field strength for the Na+ in comparison with Mg2 + and Ca2 + and breakdown of longer chain polyphosphates into orthophosphate ions. P40 composites exhibited good biocompatibility to human mesenchymal stem cells (MSCs), which was suggested to be due to the low degradation rate of P40 fibres. After 63 days immersion in PBS at 37 °C, the P40 composite rods lost ~ 1.1% of mass. The wet flexural, shear and compressive strengths for P40 UD rods were ~ 70%, ~ 80% and ~ 50% of their initial dry values after 3 days of degradation, whereas the flexural modulus, shear and compressive strengths were ~ 70%, ~ 80%, and ~ 65% respectively. Subsequently, the mechanical properties remained stable for the duration of the study at 63 days. The initial decrease in mechanical properties was attributed to a combination of the plasticisation effect of water and degradation of the fibre–matrix interface, with the subsequent linear behaviour being attributed to the chemical durability of P40 fibres. P40 composite rods showed low degradation and ion release rates, good biocompatibility and maintained mechanical properties similar to cortical bone for the duration of the study. Therefore, P40 composite rods have huge potential as resorbable intramedullary nails or rods.  相似文献   

9.
In the present work, HA reinforced with Al2O3 and multiwalled carbon nanotubes (CNTs) is processed using spark plasma sintering (SPS). Vickers micro indentation and nanoindentation of the samples revealed contrary mechanical properties (hardness of 4.0, 6.1, and 4.4 GPa of HA, HA–Al2O3 and HA–Al2O3–CNT samples at bulk scale, while that of 8.0, 9.0, and 7.0 GPa respectively at nanoscale), owing to the difference in the interaction of the indenter with the material at two different length scales. The addition of Al2O3 reinforcement has been shown to enhance the indentation fracture toughness of HA matrix from 1.18 MPa m1/2 to 2.07 MPa m1/2. Further CNT reinforcement has increased the fracture toughness to 2.3 times (2.72 MPa m1/2). In vitro biocompatibility of CNT reinforced HA–Al2O3 composite has been evaluated using MTT assay on mouse fibroblast L929 cell line. Cell adhesion and proliferation have been characterized using scanning electron microscopy (SEM), and have been quantified using UV spectrophotometer. The combination of cell viability data as well as microscopic observations of cultured surfaces suggests that SPS sintered HA–Al2O3–CNT composites exhibit the ability to promote cell adhesion and proliferation on their surface and prove to be promising new biocompatible materials.  相似文献   

10.
Nano/micrometer hybrids are prepared by chemical vapor deposition growth of carbon nanotubes (CNTs) on SiC, Al2O3 and graphene nanoplatelet (GNP). The mechanical and self-sensing behaviors of the hybrids reinforced epoxy composites are found to be highly dependent on CNT aspect ratio (AR), organization and substrates. The CNT–GNP hybrids exhibit the most significant reinforcing effectiveness, among the three hybrids with AR1200. During tensile loading, the in situ electrical resistance of the CNT–GNP/epoxy and the CNT–SiC/epoxy composites gradually increases to a maximum value and then decreases, which is remarkably different from the monotonic increase in the CNT–Al2O3/epoxy composites. However, the CNT–Al2O3 with increased AR  2000 endows the similar resistance change as the other two hybrids. Besides, when AR < 3200, the tensile modulus and strength of the CNT–Al2O3/epoxy composites gradually increase with AR. The interrelationship between the hybrid structure and the mechanical and self-sensing behaviors of the composites are analyzed.  相似文献   

11.
Highly elastic and transparent bilayer films composed of MWCNT and polydimethylsiloxane (PDMS) layers were fabricated by spin-coating of MWCNT aqueous solution on glass plates and following curing of PDMS applied on the MWCNT layer. Morphological feature, optical transparency, tensile property, electrical property, and electric heating behavior of the bilayer films with different MWCNT layer thicknesses of 65–185 nm were investigated. SEM images confirmed that pristine MWCNTs were uniformly deposited on glass substrates and the PDMS layer was combined well with the MWCNT layer, resulting in high structural stability of the bilayer films to high elongational or twisting deformations. With the increase of the thickness of the MWCNT layer, the sheet resistance of the bilayer films decreased substantially from ~ 105 Ω/sq to ~ 103 Ω/sq, in addition to the change of the optical transmittance from ~ 75% to ~ 40% at a 550 nm wavelength. The electric heating behavior of MWCNT/PDMS bilayer films was strongly dependent on the thickness of the MWCNT layer as well as the applied voltage. Even under high twisting by 540° or continuous stepwise voltage changes for long periods of time, the MWCNT/PDMS bilayer films retained stable electrical heating performance in aspects of temperature responsiveness, steady-state maximum temperature, and electric power efficiency.  相似文献   

12.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

13.
In the present study, the extent of jute and viscose fibre breakage during the extrusion process on the fracture toughness and the fatigue properties was investigated. The composite materials were manufactured using direct long fibre thermoplastic (D-LFT) extrusion, followed by compression moulding. The fracture toughness (KIC) and the fracture energy (GIC) of the PP–J30 composites were significantly improved (133% and 514%, respectively) with the addition of 10 wt% viscose fibres, indicating hindered crack propagation. The addition of viscose fibres resulted in three times higher fatigue life compared with that of the unmodified jute composites. Further, with the addition of (2 wt%) MAPP, the PP–J30–V10 resulted in a higher average viscose fibre length of 8.1 mm, and the fracture toughness and fracture energy increased from 9.1 to 10.0 MPa m1/2 and 28.9 to 31.2 kJ/m2, respectively. Similarly, the fatigue life increased 51% compared with the PP–J30–V10, thus demonstrating the increased work energy due to hindrance of the propagation of cracks.  相似文献   

14.
Graphene (GN)-based composite paper containing 10 wt.% cellulose nanowhiskers (CNWs) exhibiting a tensile strength of 31.3 MPa and electrical conductivity of 16 800 S/m was prepared by ultrasonicating commercial GN powders in aqueous CNWs suspension. GN/CNWs freestanding paper was applied to prepare the sandwiched films by dip coating method. The sandwiched films showed enhanced tensile strength by over two times higher than the neat resins. The moduli of the sandwiched films were around 300 times of the pure resins due to the high content of GN/CNWs paper. The glass transition temperature of the sandwiched films increased from 51.2 °C to 57.1 °C for pure epoxy (E888) and SF (E888), and 49.8 °C to 64.8 °C for pure epoxy (650) and SF (650), respectively. The bare conductive GN/CNWs paper was well protected by the epoxy resin coating, which is promising in the application as anti-static materials, electromagnetic interference (EMI) shielding materials.  相似文献   

15.
Graphite nanoplatelets (GNP), carbon black (CB) and carbon nanotubes are extensively researched to produce thermal interface materials (TIMs). This work reports comparison of interfacial thermal conductance (ITC) of carbon nanofiller-based polymer composite adhesives and pastes. The results show that total thermal contact resistance (TTCR) of GNP/rubbery epoxy composite was the same as that of an equivalent glassy epoxy composite. Although CB-based rubbery epoxy and silicone composites can be applied as thin bondlines, their TTCRs were significantly higher than GNP/rubbery epoxy. GNP incorporation into CB/rubbery epoxy composite improves the ITC of the CB/rubbery epoxy composites but the performance of CB/GNP/rubbery epoxy was inferior to GNP/rubbery epoxy. The thermal paste of GNP/polyetheramine had TTCR of 4.8 × 10 6 m2·K/W which is comparable to commercial TIM-paste. The paste produced with silicone had relatively poor ITC versus that prepared with polyetheramine. The paste having smaller particle sized GNPs offers lower TTCR than that prepared with large sized GNPs. The GNP/rubbery epoxy adhesives produced from precursor pastes gave the lowest TTCRs in comparison with the other adhesives. This study suggests that GNPs offer potential for enhancing ITC of TIMs and that ITC of adhesives depends on fillers' thermal conductivity and their interfacial contact with substrates.  相似文献   

16.
This paper reports the alignment of multi-walled carbon nanotubes (MWCNTs) in an epoxy matrix as a result of DC electric fields applied during composite curing. Optical microscopy and polarized Raman spectroscopy are used to confirm the CNT alignment. The alignment of CNTs gives rise to much improved electrical conductivity, elastic modulus and quasi-static fracture toughness compared to those with CNTs of random orientation. An extraordinarily low electrical percolation threshold of about 0.0031 vol% is achieved when measured along the alignment, which is more than one order of magnitude lower than 0.034 vol% with random orientation or that measured perpendicular to the aligned CNTs. The examination of the fracture surfaces identifies pertinent toughening mechanisms in aligned CNT composites, namely crack tip deflection and CNT pullout. The significance of this paper is that the technique employed here can tailor the physical, mechanical and fracture properties of bulk nanocomposites even at a very low CNT concentration.  相似文献   

17.
Microstructures and fracture toughness of arc-melted and directionally solidified Mo–ZrC eutectic composites were investigated in this study. Two kinds of directionally solidified composites were prepared by spot-melting and floating zone-melting. Microstructure of the arc-melted composite (AMC) consists of equiaxed eutectic colonies, in which ZrC particles are dispersed. The spot-melted composite (SMC) exhibits spheroidal colony structure, which is rather inhomogeneous in size and morphology. ZrC fibers in the eutectic colonies are aligned almost parallel to the growth direction. Well aligned, homogeneous columnar structure with thin ZrC fibers evolves in the floating zone-melted composite (FZC). Texture measurement by X-ray diffractometry revealed that the growth direction of Mo solid solution (MoSS) in FZC is preferentially 〈100〉, while that of SMC is scattered. Fracture toughness KQ evaluated by three point bending test using the single edge notched beam method is >13 MPa m1/2 for AMC, 20 MPa m1/2 for SMC and 9 MPa m1/2 for FZC. Intergranular fracture along colony boundaries is often observed in AMC. In contrast, transgranular fracture is dominant in SMC and FZC, although significant gaps caused by intergranular fracture are occasionally observed in SEM micrographs of SMC. Fracture surface in FZC is wholly flat. Pull-out of ZrC occurs owing to Mo/ZrC interfacial debonding in intergranularly fractured regions of AMC and SMC.Coarse elongated colonies in SMC and FZC induce transgranular fracture instead of intergranular fracture. Intergranular fracture and interfacial debonding in AMC and SMC causes frequent crack deflection accompanied by ligament formation and crack branching, which is responsible for the high fracture toughness of the composites. Preferred 〈100〉 growth of MoSS phase in FZC leads to brittle {100} cleavage fracture associated with low fracture toughness.  相似文献   

18.
The concept of translaminar fracture toughness of 0° plies has enabled the development of a considerable number of ply-level numerical models for structural failure of laminated composites. Using thin-ply pre-pregs, this paper demonstrates that this translaminar toughness is not an absolute, but rather in-situ, property and depends strongly on the 0° ply-block thickness, even in situations where delamination and diffuse damage are inhibited. We used two different grades of a thin-ply carbon-epoxy system to produce four different 0° ply-block thicknesses ranging from 0.03 mm to 0.12 mm, and measured the respective translaminar fracture toughness using compact tension tests. SEM and X-ray analysis showed no delamination nor diffuse damage. Yet, the translaminar fracture toughness increased from 46 to 104 kJ/m2 (initiation), and from 49 to 160 kJ/m2 (propagation), for the thickness range above. This finding has significant implications for the development and use of ply-level numerical failure models, for structural design with thin-ply composites, and for the development of thin-ply material systems.  相似文献   

19.
M. Kundu  S. Mahanty  R.N. Basu 《Materials Letters》2011,65(19-20):3083-3085
Nanocrystalline Li4Ti5O12/Li3SbO4/C composite-prepared by mechanical ball-milling of Li4Ti5O12 (synthesized by aqueous combustion), Li3SbO4 (synthesized by solid state method) and activated carbon, has been investigated as anode in lithium-ion coin cells and compared to pristine Li4Ti5O12. Galvanostatic charge–discharge measurements in the potential window of 0.05–2.0 V show three plateau regions corresponding to Li insertion/extraction in the composite: a large flat plateau at ~ 1.52/1.59 V, followed by a second plateau at ~ 0.75/1.1 V and a sloppy tail at ~ 0.4/0.6 V. While the plateaus at ~ 0.4/0.6 V and ~ 1.52/1.59 V correspond to Li4Ti5O12, the other one at ~ 0.75/1.1 V corresponds to Li3SbO4. At a high rate of ~ 15 C, the capacity for Li4Ti5O12/Li3SbO4/C composite is found to be 105 mAhg?1 retaining ~ 78% of its initial capacity compared to only 58 mAhg?1 (~ 27% of the initial capacity) at 14 C for pristine Li4Ti5O12 up to 100 cycles. Thus, such composite material might find application in lithium-ion batteries requiring high rate of charge and discharge.  相似文献   

20.
Carbon nanotubes–alumina (CNT–Al2O3) nanocomposites with variable CNT content were directly synthesized by chemical vapor deposition (CVD). The as-grown CNT–Al2O3 mixture was densified by spark plasma sintering (SPS) at 1150 and 1450 °C. Vickers hardness of 9.98 GPa and fracture toughness of 4.7 MPam1/2 were obtained for 7.39 wt.% CNT–Al2O3 nanocomposite. The addition of CNTs gives rise to 8.4% increase in hardness and 21.1% increase in toughness over that of the pure Al2O3. The optimum amount of CNTs is considered to be able to significantly enhance the mechanical property of ceramics in composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号