首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of three-dimensional ZnO hybrid structures by metal-organic chemical vapor deposition was controlled through their growth pressure and temperature. Vertically aligned ZnO nanorods were grown on c-plane of sapphire substrate at 600 °C and 400 Torr. ZnO film was then formed in situ on the ZnO nanorods at 100, 600, and 700 °C and 10 Torr. High-resolution X-ray diffraction measurements showed that the ZnO film on the nanorods/sapphire grew epitaxially, and that the ZnO film/nanorods hybrid structures had well-ordered wurtzite structures. The hybrid ZnO structure was shown to be about 3–5 μm by field-emission scanning electron microscopy. The hybrid formed at 600 °C showed better crystalline quality those formed at 100 °C or 700 °C. These structures have potential applicability as nanobuilding blocks in nanodevices.  相似文献   

2.
In the present work, we reported a novel method for the synthesis of well-dispersed flower-like ZnO microstructures derived from highly regulated, well-dispersed ZnO nanorods by using low temperature (100 °C) hydrothermal process and without using any additional surfactant, organic solvents or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD) which confirms the high crystal quality of ZnO with hexagonal (wurtzite-type) crystal structure. The morphological and structural analyses were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicate the formation of well-dispersed ZnO nanorods as well as flower-like ZnO. It has been shown that flower-like ZnO is made up of dozen of ZnO nanorods building block units. The high resolution transmission electron microscopy (HRTEM) and their corresponding selected area electron diffraction (SAED) pattern show that both ZnO nanorods and flower-like ZnO microstructures are single crystalline in nature and preferentially grow along [0 0 0 1] direction. Their optical property was characterized by photoluminescence spectroscopy; shows ZnO nanorods have only violet emission and no other emission while flower-like ZnO microstructures have a weak violet emission and a strong visible emission. A plausible growth mechanism of ZnO nanorods as well as flower-like ZnO microstructures has been given.  相似文献   

3.
ZnO nanorod arrays were synthesized on glass substrates coated by a ZnO seeding layer via a hydrothermal technique by adding polyethyleneimine (PEI) to the growth solution. The XRD and SEM results show that the ZnO nanorods have the single crystal wurtzite structure with the (0 0 2) direction normal to the substrates. In 50 ml growth solution of 0.05 M zinc salts, the average diameter of the nanorods was reduced drastically from 300 nm to 40 nm with the PEI amount increasing from 0 ml to 6 ml. The diameter distribution and the polycrystalline layer at the bottom of the nanorods were improved. Longer nanorods were obtained by prolonging the growth time. Based on the results, possible mechanisms that PEI adsorbs on the non-polar facets of ZnO nanorods and its coordination to zinc ions were proposed to elucidate the effect of PEI on reducing the diameters and improving the morphologies of nanorods.  相似文献   

4.
Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of ~99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 μm. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of ~0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells. The synthesized nanostructures were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HR-TEM), X-ray energy dispersive spectroscopy (EDS), and selected area electron diffraction pattern (SAED). The growth mechanism of the ZnO nanostructures is discussed.  相似文献   

5.
This paper reports additive-free, reproducible, low-temperature solution-based process for the preparation of crystalline ZnO nanorods by homogeneous precipitation from zinc acetate. Also, ZnO nanorod structured dye sensitized solar cells using ruthenium dye (Z907) have been fabricated and characterized. The formation and growth of zinc oxide nanorods are successfully achieved. We analyzed three different synthesis method using solution phase, autoclave and microwave. The calcination effects on the morphology of ZnO nanorods are also investigated. Analysis of ZnO nanorods shows that calcination at lower temperature is resulted in a nanorod growth. Additive-free, well-aligned ZnO nanorods are obtained with the length of 330–558 nm and diameters of 14–36 nm. The XRD, SEM, and PL spectra have been provided for the characterization of ZnO nanorods. Microwave-assisted ZnO nanostructured dye sensitized solar cell devices yielded a short-circuit photocurrent density of 6.60 mA/cm2, an open-circuit voltage of 600 mV, and a fill factor of 0.59, corresponding to an overall conversion efficiency of 2.35% under standard AM 1.5 sun light.  相似文献   

6.
《Advanced Powder Technology》2014,25(4):1266-1272
This work aimed to use the waste zinc-dust from a hot-dip galvanizing plant for the synthesis of nanosized ZnO photocatalyst powder via hydrothermal treatment. ZnO particles with different morphologies and sizes were obtained by varying the solution pH (8–12) and the amount of hydroxypropyl cellulose (HPC) dispersant (0–0.15% (w/v)) under hydrothermal treatment at 170 °C for 8 h. The influence of the preparation conditions on the properties of resultant ZnO particles were evaluated by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, laser light scattering and Brunauer–Emmett–Teller analyses. The solution pH affected the crystallinity, particle morphology and specific surface area of the obtained ZnO, which in turn influenced its photocatalytic activity. The addition of the optimum amount of HPC (0.1% (w/v)) in the starting solution acted as a dispersant to reduce ZnO particle agglomeration but had the opposite effect at higher levels. Moreover, ZnO nanorods with various aspect ratios and a diameter and length range of 20–70 nm and 100–400 nm, respectively, were obtained depending on the amount of added HPC. The photocatalytic activity of the synthesized ZnO powder was improved by the addition of the optimal amount of HPC, and correlated to the particle dispersion and specific surface area.  相似文献   

7.
In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ~ 64 and ~ 256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration.  相似文献   

8.
ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO2 covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO2 phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO2 buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°.  相似文献   

9.
Mn-doped ZnO nanorods with ~30 nm in diameter and ~200 nm in length were synthesized by a seed-mediated solution method. The structures, magnetic properties, as well as the annealing effect were characterized by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectrum and physical properties measurement system. Magnetic properties measurement revealed that the Zn0.97Mn0.03O nanorods exhibited ferromagnetism with a saturation magnetization of 0.005 emu g?1 and a coercivity of 110 Oe at 305 K. After annealing the samples at 900 °C for 2 h in air, the nanorods were transformed into nanoparticle aggregates. The coercivity and saturation magnetization increased obviously. Detailed analyses proved that a phase-separation process was happened at the high temperature. In this process, most of the particles preserved the wurtzite ZnO structure, while a few small ones evolved into spinel-structured particles. The increasing of the ferromagnetism of the annealed sample is attributed to the formation of secondary phase ZnxMn3?xO4.  相似文献   

10.
《Materials Research Bulletin》2013,48(4):1581-1586
In this work, ZnO films, nanorod and nanorod/shell arrays were synthesized on the surface of PET-ITO electrodes by electrochemical methods. ZnO films with high optical transmittance were prepared from a zinc nitrate solution using a pulsed current technique with a reduced pulse time (3 s). The X-ray diffraction pattern of ZnO film deposited on PET-ITO electrode showed that it has a polycrystalline structure with preferred orientations in the directions [0 0 2] and [1 0 3]. ZnO nanorods were synthesized on electrochemical seeded substrate in an aqueous solution containing zinc nitrate and hexamethylenetetramine. In order to increase the stability of PET-ITO electrode to electrochemical and chemical stresses during ZnO nanorods deposition the surface of the electrode was treated with a 17 wt% NH4F aqueous solution. Electrochemical stability of PET-ITO electrode was evaluated in a solution containing nitrate ions and hexamethylenetetramine. ZnO nanorod/shell arrays were fabricated using eosin Y as nanostructuring agent. Photoluminescence spectra of ZnO nanorod and ZnO nanorod/shell arrays prepared on the surface of PET-ITO electrode were discussed comparatively. By employing the 1.5 μm-length ZnO nanorod/shell array covered with a Cu2O film a photovoltaic device was fabricated on the PET-ITO substrate.  相似文献   

11.
Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL <  10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene.  相似文献   

12.
Tetrapod-like ZnO nanostructures were fabricated on ZnO-coated sapphire (001) substrates by two steps: pulsed laser deposition (PLD) and catalyst-free thermal evaporation process. First, the ZnO films were pre-deposited on sapphire (001) substrates by PLD. Then the ZnO nanostructures grew on ZnO-coated sapphire (001) substrate by the simple thermal evaporation of the metallic zinc powder at 900 °C in the air without any catalysts. The pre-deposited ZnO films by PLD on the substrates can provide growing sites for the ZnO nanostructures. The as-synthesized ZnO nanostructures were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrum (FTIR). The results show that the tetrapod-like ZnO nanostructures are highly crystalline with the wurtzite hexagonal structure. Photoluminescence (PL) spectrum of as-synthesized nanostructures exhibits a UV emission peak at ~ 389 nm and a broad green emission peak at ~ 513 nm. In addition, the growth mechanism of ZnO nanostructures is also briefly discussed.  相似文献   

13.
Here in, the synthesis of the terbium doped zinc oxide (ZnO:Tb3+) nanorods via room temperature chemical co-precipitation was explored and their structural, photoluminescence (PL) and thermoluminescence (TL) studies were investigated in detail. The present samples were found to have pure hexagonal wurtzite crystal structure. The as obtained samples were broadly composed of nanoflakes while the highly crystalline nanorods have been formed due to low temperature annealing of the as synthesized samples. The diameters of the nanoflakes are found to be in the range 50–60 nm whereas the nanorods have diameter 60–90 nm and length 700–900 nm. FTIR study shows ZnO stretching band at 475 cm?1 showing improved crystal quality with annealing. The bands at 1545 and 1431 cm?1 are attributed to asymmetric and symmetric CO stretching vibration modes. The diffuse reflectance spectra show band edge emission near 390 nm and a blue shift of the absorption edge with higher concentration of Tb doping. The PL spectra of the Tb3+-doped sample exhibited bright bluish green and green emissions at 490 nm (5D4  7F6) and 544 nm (5D4  7F5) respectively which is much more intense then the blue (450 nm), bluish green (472 nm) and broad green emission (532 nm) for the undoped sample. An efficient energy transfer process from ZnO host to Tb3+ is observed in PL emission and excitation spectra of Tb3+-doped ZnO ions. The doped sample exhibits a strong TL glow peak at 255 °C compared to the prominent glow peak at 190 °C for the undoped sample. The higher temperature peaks are found to obey first order kinetics whereas the lower temperature peaks obey 2nd order kinetics. The glow peak at 255 °C for the Tb3+ doped sample has an activation energy 0.98 eV and frequency factor 2.77 × 108 s?1.  相似文献   

14.
《Materials Research Bulletin》2006,41(12):2238-2243
α-FeOOH nanorods have been prepared at room temperature by an environment-friendly microemulsion approach. X-ray diffraction and transmission electron microscopy revealed that the single-crystalline orthorhombic α-FeOOH nanorods are 8.2 ± 1.5 nm in diameter and 106 ± 16 nm in length. Furthermore, the mechanism for the formation of α-FeOOH nanorods is preliminarily presented. This method may be widely used for reference to fabricate other inorganic one-dimensional nanostructured materials and easily realized in industrial-scale synthesis.  相似文献   

15.
《Materials Research Bulletin》2013,48(11):4769-4774
The ZnO nanorods with small diameters of 20 nm were prepared successfully by an easy “in situ consumed template” route. In the synthesis, Zn(Ac)2 were used as Zn source and dodecanethiol (DT) was used as coordinated agents in ethanol solvent. The samples were characterized detailed by XRD, TEM and IR techniques. The results indicated that the ZnO rods were uniform in diameters with good crystallinity. Time-dependent experiments indicated that the ZnO rods are grown within the Zn–DT complex (a complex composed of Zn and DT) that was formed at the beginning of the reaction. With prolonging the reaction time, the Zn–DT “template” was gradually in situ consumed and transformed into ZnO, and finally, the ZnO nanorods with diameters of 20 nm were obtained. The method here provides the new route for ZnO nanorods with small diameters.  相似文献   

16.
《Materials Letters》2007,61(8-9):1809-1811
PbS nanorods were synthesized by surfactant-assisted homogenous hydrolysis. The products were characterized by UV–vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). PbS nanorods were measured by the Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of the NLO measurements shows that the PbS nanorods have the third-order nonlinear optical properties of both NLO absorption and NLO refraction with self-focusing effects. The nonlinear absorption coefficient and refractive index of the PbS nanorods are 2.16 × 10 9 m/W and 3.52 × 10 16 m2/W respectively.  相似文献   

17.
Metal–semiconductor Zn–ZnO core–shell microcactuses have been synthesized on Si substrate by simple thermal evaporation and condensation route using NH3 as carrier gas at 600 °C under ambient pressure. Microcactuses with average size of 65–75 μm are composed of hollow microspheres with high density single crystalline ZnO rods. The structure, composition and morphology of the product were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapor–liquid–solid (VLS) based growth mechanism was proposed for the formation of Zn–ZnO core–shell microcactuses. Room temperature photoluminescence (PL) investigations revealed a strong and broad blue emission band at 441 nm associated with a weak ultraviolet (UV) peak at 374 nm. This blue emission (BE) is different from usually reported green/yellow-green emission from Zn–ZnO or ZnO structures. The field emission (FE) measurements exhibited moderate values of turn-on and threshold fields compared with reported large field emissions for other materials. These studies indicate the promise of Zn–ZnO core–shell microcactuses for the applications in UV-blue light display and field emission microelectronic devices.  相似文献   

18.
ZnO nanoparticles (NPs) embedded in Si (100) substrate have been created by Zn ion implantation and post thermal annealing in oxygen atmosphere. Several techniques have been employed to investigate the formation of Zn NPs and their thermal evolution at elevated temperatures. Grazing X-ray diffraction results clearly show that ZnO NPs are effectively formed after 600 °C annealing, and they show a (101) preferential orientation. Cross-sectional transmission electron microscopy observations confirm that ZnO NPs with a narrow size distribution of 2–7 nm are formed within the near-surface region of about 35 nm in thickness. Photoluminescence measurement displays a strong emission band centered at 387 nm in the sample annealed at 600 °C.  相似文献   

19.
Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.  相似文献   

20.
A novel 2D leaf-like polyaniline with special hierarchical micro/nanostructures, a length of about 3 μm, width of about 2.3 μm and thickness of about 120 nm, has been successfully synthesized in the presence of poly (acrylic acid-co-maleic acid) sodium salt (PAA/MA-SS), which is self-assembled from 2D square nanoplate and 1D nanorods. Its surface consists of highly cross-linked nanorods of approximately 100 nm in length and 30 nm in diameter. In order to investigate the formation mechanism of such 2D leaf-like polyaniline, some micro/nanostructures of polyaniline are synthesized at different polymerization times and the results show that the polyaniline microleaves originate from square nanoplates, which then self-assemble into leaf-like micro/nanostructures with nanorods on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号