首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

2.
《Ceramics International》2022,48(9):12118-12125
In this study, (Cu1/3Nb2/3)4+ complex cation and BaO–ZnO–B2O3 glass frit were adopted to solve the high sintering temperature and poor temperature stability of Ba3Nb4Ti4O21 ceramics. It is shown that pure Ba3Nb4Ti4O21 phase was formed when Ti site was partially replaced by (Cu1/3Nb2/3)4+ cation. The increasing number of dopants decreases the dielectric polarizability, correspondingly, the dielectric constant and temperature coefficient of the resonance frequency values are reduced consistently. The variation of the Q × f value is determined by internal ionic packing fraction and external sintering densification. The (Cu1/3Nb2/3)4+ cation effectively decreases the suitable sintering temperature from 1200 to 1050 °C while greatly improving the temperature stability. BaO–ZnO–B2O3 glass was used to further improve the low-temperature sintering characteristics of Ba3Nb4Ti4O21 ceramics. It is proven that the addition of glass frits effectively decreases the temperature to 925 °C with combinational excellent microwave dielectric properties: εr ~55.6, Q × f ~5700 GHz, τf ~3 ppm/°C, making the Ba3Nb4Ti4O21 ceramics promising in the applications of low-temperature cofired ceramic technology.  相似文献   

3.
The microwave dielectric loss of stoichiometric and non‐stoichiometric Ba(Co1/3Nb2/3)O3 ceramics have been measured from 2 to 300 K in magnetic fields ranging from 0 to 5 T using a dielectric resonator (DR) technique. The microwave absorption from spin excitations of unpaired d‐electrons in exchange coupled Co2+ ions dominate the loss of the Ba(Co1/3Nb2/3)O3 ceramics at cryogenic temperatures. Two peaks in the loss tangent (tan δ) vs temperature relation from a distinctly different origin occur at 25‐30 K and 90 K, which increase in magnitude with increasing Co content in the bulk dielectric samples. Evidence that these peaks result from polaron conduction from hopping between Co2+ and Co3+ ions includes (i) the peak's observed temperature range; (ii) the decrease in peak intensity of approximately a factor of two in a large applied magnetic fields (5 T); and (iii) a strong correlation between the peak's magnitude and both the fraction of the minority Co3+ in the dominant Co2+ matrix and D.C. conductivity at elevated temperatures. A magnetic‐field independent high temperature peak with a maximum at 250 K dominates the room temperature microwave loss whose magnitude correlates with those of the low temperature peaks. This suggests that the defects responsible for carrier conduction play an important role in establishing the loss tangent at room temperature.  相似文献   

4.
Ba2Zn(1+x)Si2O(7+x) ceramics were prepared using the conventional solid-state method at 1200 °C for 3 h in air. Apart from the previously reported Ba2Zn(1+x)Si2O(7+x) (x = 0) with a monoclinic structure (C 2/c), the end-member compositions at x = −1 and 1 exhibit single-phase β-BaSiO3 with an orthorhombic structure (P212121) and BaZnSiO4 with a hexagonal structure (P63), and possess a coexistence of weak ferroelectricity and low-permittivity microwave dielectric properties. A reduction in Zn2+ content mainly decreases the intensity of the εr anomaly peak at lower temperature and increases the εr (or frequency) stability against temperature. The Zn2+-rich BaZnSiO4 phase has a τf value of −181 ppm/°C, whereas the τf value of Zn2+-free BaSiO3 phase decreases to −35.4 ppm/°C. The Zn2+ deficiency in Ba2ZnSi2O7 composition could inhibit the presence of BaZnSiO4 phase and improve the τf value, whereas excessive Zn2+ cations prompt the formation of the BaZnSiO4 phase to deteriorate significantly the τf value.  相似文献   

5.
《Ceramics International》2016,42(16):18087-18093
Ba3CaNb2O9 is a 1:2 ordered perovskite which presents a trigonal cell within the D3d3 space group. Dense ceramics of Ba3CaNb2O9 were prepared by the solid-state reaction route, and their microwave dielectric features were evaluated as a function of the sintering time. From Raman spectroscopy, by using group-theory calculations, we were able to recognize the coexistence of the 1:1 and 1:2 ordering types in all samples, in which increasing the sintering time tends to reduce the 1:1 domain, leading to an enhancement of the unloaded quality factor. We concluded that this domain acts as a lattice vibration damping, consequently raising the dielectric loss at microwave frequencies. The best microwave dielectric parameters were determined in ceramics sintered at 1500 °C for 32h: ε′ ~ 43; Qu×fr = 15,752 GHz; τf ~ 278 ppm °C−1.  相似文献   

6.
《Ceramics International》2023,49(16):27147-27153
Novel walstromite-type MCa2Si3O9 (M = Ba, Sr) ceramics, with triclinic space group P-1, were prepared through a solid-state reaction method. The P–V-L theory proves that the lattice energy and bond energy of the Si–O bond play a leading role in the quality factor and the dielectric constant is mainly determined by the ionic polarization. Excellent microwave dielectric properties of BaCa2Si3O9 and SrCa2Si3O9 ceramics could be obtained: εr = 8.99 ± 0.23, Q × f = 44,542 ± 500 GHz, and τf = −25.9 ± 3.0 ppm/°C and εr = 7.39 ± 0.23, Q × f = 48,772 ± 500 GHz, and τf = −27.5 ± 3.0 ppm/°C, when sintered at 1240/1280 °C for 4 h. Then SrCa2Si3O9 ceramic is applied to a new microstrip bandpass filter, because of its high microwave dielectric properties and low thermal expansion coefficient. With reduced dimension, the filtering performance of the circuit is also highly improved, including reduced capacitor parasitic effect and the optimized stopband insertion loss. Accordingly, the SrCa2Si3O9 ceramic is a promising candidate for sub-6 GHz a filter of microstrip bandpass applications.  相似文献   

7.
8.
Ba2MGa11O20 (M = Bi, La; called BBG and BLG, respectively) ceramics with monoclinic space group I2/m were prepared through a solid-state reaction method. BBG ceramic sintered at 1150 °C for 6 h has the best microwave dielectric properties with low εr = 10.68, Q × f = 41,756 GHz, and negative τf = ?61.3 ppm/°C. BLG ceramic sintered at 1440 °C for 6 h exhibits εr = 13.94, Q × f = 45,592 GHz, and near-zero τf = ?16.3 ppm/°C. The large deviation between εr and εth was ascribed to the “rattling” effect of the cations and the existence of lone pair ions of Bi3+. The difference in Q × f of the two ceramics was discussed in terms of packing fraction, and the τf of BLG was closer to zero than that of BBG due to the smaller τε value. Their intrinsic dielectric properties were analyzed through far-infrared reflectivity spectroscopy.  相似文献   

9.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   

10.
It is an important subject to improve the temperature coefficient of resonant frequency (τf) and thermal conductivity (κ) of microwave dielectric ceramics without reducing the Qf value. Ordered domain engineering was applied to realize the previous objectives in Ba(Mg1/3Ta2/3)O3 ceramics. With the increasing ordering degree from 0.835 to 0.897, the optimized Qf value was obtained. Meanwhile, near zero τf from 11.9 to 5.6 ppm °C−1 was achieved, together with increased κ from 5.5 to 7.6 W m−1 K−1, and enhanced dielectric strength from 801 to 921 kV cm−1. The noticeable ordered domain structure with large ordered domains (∼100 nm) and low-energy domain boundaries was revealed in Ba(Mg1/3Ta2/3)O3. The consequent weakened phonon scattering rises the thermal conductivity. The increased bond covalency and oxygen distortion in ceramics with higher ordering degree were suggested as a cause of enlarged bandgap, which enhanced the dielectric strength. The reduced τf is dominated by the less “rattling” space of the cations in the ordered state by inducing more positive τε. The reduced τf, optimized thermal conductivity, and Qf value in the present work indicate that the ordered domain engineering could open up a new direction for the optimization of microwave dielectric ceramics.  相似文献   

11.
12.
利用常规固相法制备了Ba1-xZn1/3Nb2/303(x=O~0.02)陶瓷,研究了Ba缺位对Ba1-xZn1/3Nb2/3O3陶瓷的相成分、B位离子长程有序度(LRO)和微波介电性能的影响规律.X射线衍射(XRD)结果显示,适量的Ba缺位可以提高材料的阳离子有序度,x=0.01时陶瓷具有最大的阳离子有序度;Ba缺位...  相似文献   

13.
《Ceramics International》2022,48(6):7441-7447
Ce2[Zr1-x(Zn1/3Nb2/3)x]3(MoO4)9 (CZ1-x(ZN)xM) (x = 0.02–0.08) compounds were successfully prepared to scientifically examine the effect of (Zn1/3Nb2/3)4+ doping on phase composition, microstructures, and properties. The XRD results showed that all compounds formed a pure phase with the space group of R-3c. SEM results indicated that all compounds were compact at 675 °C, and the lattice parameters and average grain size decreased with doping. Performance analysis illustrated that εr was closely related to the polarizability, and Q?f was affected by the lattice energy of the Mo–O bond. The τf was maintained at an excellent level. Far-infrared analysis indicated that the major dielectric contribution to CZ1-x(ZN)xM ceramics was related to the absorption of phonon oscillation. The optimum properties (εr = 10.72, Q?f = 59,381 GHz, τf = ?11.48 ppm/°C) were obtained when x = 0.04.  相似文献   

14.
The crystal structure and microwave dielectric properties of Zn3-xCux(BO3)2 (x = 0–0.12) ceramics prepared via a traditional solid-state reaction method were investigated by means of X-ray diffraction (XRD) utilizing the Rietveld refinement, complex chemical bond theory, and Raman spectroscopy. XRD showed that all samples were single phase. The samples maintained a low permittivity, even at higher Cu2+ contents, which is conducive to the shortening of signal delay time, and intimately related to the average bond ionicity and Raman shift. Moreover, proper Cu2+ substitution greatly reduced the dielectric loss associated with the lattice energy. Cu2+ entering the lattice optimized the temperature coefficient of resonance frequency (τf) values and improved the temperature stability of samples by affecting the bond energy. Optimal microwave dielectric properties were: εr = 6.64, Q × f = 160,887 GHz, τf = ?42.76 ppm/°C for Zn2.96Cu0.04(BO3)2 ceramics sintered at 850 °C for 3 h, which exhibited good chemical compatibility with silver and are therefore good candidate materials for Low temperature co-fired ceramic applications.  相似文献   

15.
In this study, the Ba3P2O8 and Mg2B2O5 were fabricated by the solid-state reaction method separately, and the (1-x)Ba3P2O8-xMg2B2O5 (x = 0.2–0.4) low-temperature co-fired ceramic (LTCC) materials were obtained in the sintering temperature range of 880–960 °C. The phase compositions, microstructures, elemental compositions, and microwave dielectric properties of the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and TE01δ mode dielectric resonator method, respectively. The results revealed that the Mg2B2O5 phase and Ba3P2O8 phase could coexist well in the (1-x)Ba3P2O8-xMg2B2O5 composite ceramics without formation of any new phases. The abnormal grain growth of Ba3P2O8 grains was inhibited by the addition of Mg2B2O5. In addition, through composition of Ba3P2O8 and Mg2B2O5, the temperature coefficient of resonant frequency (τf) and quality factor (Q×f) were effectively optimized, and the sintering temperature was reduced to 880–960 °C. The optimal performance of 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic was achieved at a sintering temperature of 920 °C, τf = ?1.9 ppm/°C, Q×f = 61,250 GHz, and a low permittivity εr = 10.7. The chemical compatibility test demonstrated that the composite ceramic could coexist well with silver, which indicated that the 0.8Ba3P2O8-0.2Mg2B2O5 composite ceramic is a candidate LTCC material with wide application prospects.  相似文献   

16.
The CaMg1-xCr2x/3Si2O6 (0?≤?x?≤?0.1) microwave dielectric ceramics were synthesized via conventional solid state reaction. In this study, the effects of Cr3+ substituting for Mg2+ on morphology, crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics were explored. XRD diffraction patterns exhibited that the CaMg1-xCr2x/3Si2O6 ceramics possessed the pure phase of CaMgSi2O6 when x?≤?0.06 and a small amount of secondary phase Ca3Cr2(SiO4)3 for 0.08?≤?x?≤?0.1. SEM micrographs revealed that the substitution of Mg2+ with Cr3+ could decrease the grain size. The apparent density was affected by the concentration of Mg vacancies. The correlation between crystal structure and microwave dielectric properties was investigated through the Rietveld refinement and Raman analysis. The microwave dielectric properties were mainly dependent on relative density, ionic polarizabilities, internal strain ?, disordered structure and MgO6 octahedron distortions. Finally, CaMg1-xCr2x/3Si2O6 (x?=?0.02) ceramics sintered at 1270?°C for 3?h exhibited excellent microwave dielectric properties of εr?=?8.06, Q?×?f?=?89054?GHz, τf?=??44.92182?ppm/ºC.  相似文献   

17.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

18.
A novel Ba16ZrNb12O48 ceramic is synthesized by a solid-state sintering method. The phase composition, microstructure, infrared reflectivity spectrum and microwave dielectric properties of Ba16ZrNb12O48 ceramic sintered at 1400−1500℃ are investigated. The differential scanning calorimetry and X-ray diffraction analysis indicate that Ba16ZrNb12O48 crystallizes in the hexagonal perovskite structure with space group R-3 m at 1250℃. As the temperature increases, the permittivity and Q × f value exhibit a strong relevance to the relative density. The satisfactory microwave dielectric properties of εr = 36.85, Q × f = 57,000 GHz (at f = 6.50 GHz), and τf = 48 ppm/℃ are obtained when the specimen is sintered at 1450℃, which renders Ba16ZrNb12O48 a potential candidate for microwave electronic devices.  相似文献   

19.
The ordered domain engineering was investigated for Ba[(Zn0.8Mg0.2)1/3Nb2/3]O3 microwave dielectric ceramics to synergistically modify the physical properties especially the temperature coefficient of resonant frequency τf and quality factor Q value together with the thermal conductivity. The ordered domain structure could be tailored and controlled by the post-densification annealing, and the fine ordered domain structures with high ordering degree and low-energy domain boundary were obtained in the present ceramics annealed around 1400°C for 24 h, where the Qf value was improved from 51 000 to 118 000 GHz, τf was suppressed from 30 to 25.5 ppm/°C. Moreover, the thermal conductivity at room temperature was increased from 3.79 to 4.30 W m−1 K−1, and the Young's modulus was improved from 98 to 214 GPa. The present work provided a promising approach for synergistic modification of physical properties in Ba-based complex perovskite microwave dielectric ceramics.  相似文献   

20.
(1-y)Ca1-xLa2x/3TiO3-yCa(Mg1/3Nb2/3)O3复合微波介质陶瓷的研究   总被引:3,自引:0,他引:3  
王浩  陈文  刘涛 《陶瓷学报》2004,25(1):47-51
采用固相合成法制备了 ( 1-y)Ca1 -xLa2x/ 3 TiO3 -yCa(Mg1 / 3 Nb2 / 3 )O3 系列微波介质陶瓷材料 ,研究了复合系统的微波介电性能、烧结性能和微观结构。研究结果表明 :在y =0 .4~ 0 .6范围内 ,体系形成了单一的钙钛矿结构 ;当复合体系组成 0 .5Ca0 .6La0 .2 67TiO3 -0 .5Ca(Mg1 / 3 Nb2 / 3 )O3 时 ,在 14 0 0℃下烧结保温 4小时所得到材料的微波介电性能最佳 ;εf=5 5 ,Q×f =45 0 0 0GHz( 7.6GHz下 ) ,τf=0 .0 4ppm/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号