首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan–pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan–pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan–pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan–pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan–pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan–pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca2+] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca2+]. It is interesting that the Zeta potential of nHCP composites is about ? 30 mV when the chitosan/pectin ratio  1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.  相似文献   

2.
PBT/CaCO3 composites were prepared in a single screw extruder with particle content varying from 0–30% by weight. The influence of surface treatment of the particles, with and without stearic acid (SA), on the mechanical, thermal and structural properties was studied. The experiments included tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The composite systems containing SA coated CaCO3 were found to exhibit better mechanical properties as compared to composite systems containing uncoated CaCO3, with the S3 system (20% of SA coated CaCO3) exhibiting best combination of mechanical properties. Thermal study revealed that particle type and content had no influence on the melting temperature but the crystallization temperature, % crystallinity and thermal stability increased on increasing the CaCO3 content in PBT matrix. Morphological observation indicated that in PBT composites containing SA coated CaCO3, the coupling agent favours a better polymer filler interaction rendering inorganic polymer interface compatible, which is also evident from better mechanical and thermal properties.  相似文献   

3.
The minerals silica, mica, and calcium carbonate (CaCO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler loading and type on the morphology, tensile, dielectric, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin films with 20 vol% filler loading showed good dielectric properties, thermal conductivity, and thermal stability. However, the tensile properties of the thin films were reduced as the filler loading was increased due to brittleness. Dielectric constant and dielectric loss of epoxy/inorganic composite films generally increased with increasing mineral filler loading. Meanwhile, the presence of mineral filler improved the thermal stability of the thin film composites. The highest dielectric constant of 5.75 with 20 vol% filler loading at a frequency of 1 MHz was exhibited by the epoxy/CaCO3 composite, followed by epoxy/mica and epoxy/silica. Therefore, the epoxy/CaCO3 composite is the most potential candidate for capacitor application. Moreover, precipitated CaCO3 provided better tensile properties and slightly improved the dielectric properties compared with mineral CaCO3.  相似文献   

4.
Calcium carbonate (CaCO3) whiskers are a new kind of microfiber used in cementitious composites and have proved to provide excellent effect on strengthening and toughening. In order to further improve the mechanical properties of CaCO3 whisker-reinforced cementitious composites, rheological properties of fresh mixtures and the CaCO3 whisker distribution in the hardened matrix were investigated. The yield stress and plastic viscosity increased with an increasing content of CaCO3 whisker and a decreasing water-cement ratio. Also, the rheological properties were affected by the distribution of CaCO3 whisker in the matrix. The largest increments in flexural and compressive strength were 27.59% and 12.60% for the mortars with CaCO3 whisker contents of 2.0% and 1.5%, respectively. The properties responsible for the mechanical response were explained in terms of the effects of CaCO3 whisker reinforcement, the distribution of CaCO3 whiskers, and the porosity as well as pore size distribution.  相似文献   

5.
The J-integral fracture toughness of PP/CaCO3 composites   总被引:2,自引:0,他引:2  
The J-integral method was introduced to investigate the fracture process of PP/CaCO3 composites. The results showed that the resistance of PP/CaCO3 composites to crack initiation and propagation was greatly improved with the addition of CaCO3 filler. Large scale plasticity was caused in PP/CaCO3 composites, from which a large amount of energy was absorbed by the PP matrix. The reason for the increase in the fracture toughness of PP/CaCO3 composites was attributed to the partial micro-drawing ahead of the crack tip in the PP matrix, which was formed by the stress concentration caused by the filler particles in the PP matrix and/or by the interfacial debonding between filler particles and the PP matrix. It was indicated that the presence of CaCO3 filler could augment the ductility of composites locally, resulting in higher fracture energy in the crack initiation and propagation of the PP/CaCO3 composites in a certain CaCO3 content range.  相似文献   

6.
Carbon nano-onion (CNO) and Ni(OH)2 or NiO composites were prepared by chemical loading of Ni(OH)2 on the carbon surface. The samples were characterized by transmission electron microscopic (TEM) and scanning electron microscopic (SEM) methods, powder X-ray diffraction (XRD) technique and by differential-thermogravimetric analyses (TGA-DTG). The porosity properties were characterized by using nitrogen gas adsorption analyses. Pristine inorganic samples of NiO and Ni(OH)2 revealed different morphologies and porous characteristics when compared to those of the CNO composites, which showed unique electrochemical properties. The electrochemical performance of the CNO/Ni(OH)2 or CNO/NiO composites is largely affected by the mass, the morphology, the crystal phases of the inorganic component and the distribution of the Ni(OH)2/NiO phase. The CNO composites were used as materials for hybrid charge-storage devices.  相似文献   

7.
Polypropylene (PP) composites with 5 wt% of different rigid particles (Al2O3 nanoparticles, SiO2 nanoparticles, Clay (Cloisite 20A) nanoparticles or CaCO3 microparticles) were obtained by melt mixing. Composites with different CaCO3 content were also prepared. The effect of fillers, filler content and addition of maleic anhydride grafted PP (MAPP) on the composites fracture and failure behavior was investigated. For PP/CaCO3 composites, an increasing trend of stiffness with filler loading was found while a decreasing trend of strength, ductility and fracture toughness was observed. The addition of MAPP was beneficial and detrimental to strength and ductility, respectively mainly as a result of improved interfacial adhesion. For the composites with 5 wt% of CaCO3 or Al2O3, no significant changes in tensile properties were found due to the presence of agglomerated particles. However, the PP/CaCO3 composite exhibited the best tensile behavior: the highest ductility while keeping the strength and stiffness of neat PP. In general, the composites with SiO2 or Clay, on the other hand, displayed worse tensile strength and ductility. These behaviors could be probably related to the filler ability as nucleating agent. In addition, although the incorporation of MAPP led to improved filler dispersion, it was damaging to the material fracture behavior for the composites with CaCO3, Al2O3 or Clay, as a result of a higher interfacial adhesion, the retardant effect of MAPP on PP nucleation and the lower molecular weight of the PP/MAPP blend. The PP/MAPP/SiO2 composite, on the other hand, showed slightly increased toughness respect to the composite without MAPP due to the beneficial concomitant effects of the presence of some amount of the β crystalline phase of PP and the better filler dispersion promoted by the coupling agent which favor multiple crazing. From modeling of strength, the effect of MAPP on filler dispersion and interfacial adhesion in the PP/CaCO3 composites was confirmed.  相似文献   

8.
Nature fabricates organic/inorganic composites under benign conditions, yet, in many cases, their mechanical properties exceed those of the individual building components it is made from. The secret behind the evolutionary pivot is the unique ability of nature to control structure and local composition of its materials. This tight control is often achieved through compartmentalization of the reagents that can be locally released. Inspired by nature, we introduce an energy-efficient process that takes advantage of the compartmentalization to fabricate porous CaCO3-based composites exclusively comprised of nature-derived materials whose compressive strength is similar to that of trabecular bones. The unique combination of nature-derived materials, 3D printability, and good mechanical properties is achieved through the formulation of these materials: We combine microgel-based granular inks that inherently can be 3D printed with the innate potential of engineered living materials to fabricate bacteria-induced biomineral composites. The resulting biomineral composites possess a porous trabecular structure that comprises up to 93 wt% CaCO3 and thereby can withstand pressures up to 3.5 MPa. We envisage this system to have the potential to be used in art restoration, serve as artificial corals to help the regeneration of marine reefs, and, with additional work, might even allow the reparation of broken or partially disintegrated natural mineral-based materials such as certain parts of bones.  相似文献   

9.
For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO3 crystal growth is being processed.  相似文献   

10.
Polyester resin-quartzite aggregate composites have been investigated for the effect of two silane coupling agents (γ-aminopropyl triethoxy silane andγ-methacryloxy propyl trimethoxy silane) on the mechanical and thermal properties. The integral blend additive method of application of the coupling agent was used in the preparation of the samples. Variation of the thermal stability and the compressive strength with the nature and the content of the silane coupling agent were quite consistent. The properties showed maxima around a certain value of the coupling agent content, which is suggested as the optimum value. Results are also presented on the samples containing an additional filler, namely, the CaCO3.  相似文献   

11.
PVC composites filled with CaCO3 particles with different diameter (about 40, 80, 500, 25000 nm) were prepared by using a single-screw extruder. The mechanical and rheological properties of the composites were investigated. The results showed that while the diameter of CaCO3 nanoparticles was smaller, the mechanical properties of composites were higher. By adding 40-nm CaCO3 nanoparticles into the PVC matrix, the single-notched impact strength of the nanocomposite at room temperature reached 82.4 kJ/m2, which was 3.5 times that of the PVC matrix without CaCO3 (23.3 kJ/m2) and 4.6 times that of the PVC blend filled with micro-CaCO3 (17.9 kJ/m2). The tensile and flexural properties of nanocomposites were also prior to those of the composites with 500-nm and 25-μm CaCO3 particles. The CaCO3 particles could make the rheological property of PVC composites worse. Moreover, the effect of mass ratio of nano-CaCO3 and micro-CaCO3 on the properties of PVC door and window profile in industry was studied. When the mass ratio was 2.5/9, the profile could obtain good mechanical properties.  相似文献   

12.
We report a novel strategy for the biological synthesis of calcite crystals using the petioles of the plant Scindapsus aureum. The resultant calcite crystals were characterized by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffractometry, and electron diffraction. The biomolecules of S. aureum petioles were confirmed by UV–Vis and FT-IR analysis. The results showed that the spherical or rhombohedral calcite crystals were obtained in the cells of S. aureum petioles. Biomimetic synthesis of calcium carbonate (CaCO3) in aqueous solution containing extracts of S. aureum petioles was also performed to investigate the soluble biomolecules’ influence on crystal growth of CaCO3. It was found that twinborn spherical calcite crystals were formed, suggesting that the soluble biomolecules of S. aureum play a crucial role in directing the formation of calcite spherical particles. The possible mechanism of formation of CaCO3 crystals using S. aureum is also discussed; the biomolecules of S. aureum may induce and control the nucleation and growth of CaCO3 crystals.  相似文献   

13.
《Materials Letters》2007,61(14-15):3083-3085
When NaCl is added in the formation of CaCO3 from CaCl2 and Na2CO3 solutions, large CaCO3 structures with complex, overlapping plates-like shapes of high calcite composition were obtained. The addition of NaCl increased the solubility of CaCO3, which promotes the transformation of vaterite to calcite and the resulting high concentration of CaCO3 promotes crystal growth rather than nucleation.  相似文献   

14.
The nucleation of apatite and calcium phosphates onto natural polysaccharides containing carboxyl groups can be obtained by immersion in biomimetic solutions. The deposition of hydroxyapatite has been recently described also on pectin, and pectin–apatite hybrid gels were proposed as scaffolds for bone tissue regeneration. In this work, injectable calcium phosphate/pectin microspheres were prepared to promote both the natural process of biomineralization and the controlled release of encapsulated cells, genes, enzymes, proteins or drugs in the pathological situ. Pectin microspheres were prepared with different formulations from aqueous solutions using an extrusion system, and incubated in H2O or SBF for 14 days. The presence of an excess of CaCl2, deriving from the preparation process, was determinant in promoting the deposition of calcium phosphates from SBF, whereas no mineral deposition was detected on pectin microspheres extensively purified after preparation. The nucleation of calcium phosphates occurred on pectin microspheres incubated in SBF for 14 days and was evaluated through ESEM–EDS analysis and FT-IR spectroscopy.  相似文献   

15.
纳米碳酸钙改性分散及其在钻井液中的应用研究   总被引:2,自引:2,他引:0  
为探讨无机纳米材料在钻井液中的应用现状,利用自然沉降和紫外-可见分光光度法优化了分散剂对纳米碳酸钙的分散改性条件,讨论了分散剂种类、分散剂用量、分散时间和温度等因素对纳米碳酸钙分散效果及分散稳定性的影响.研究表明:优化条件下制得的分散体系润湿性和分散性有很大改善;添加改性和未改性纳米碳酸钙基浆均具有一定的降滤失性,二者表观黏度、塑性黏度和动切力均表现为降低趋势;泥浆流变性能得到一定改善,改性纳米碳酸钙较未改性纳米碳酸钙颗粒的封堵效应更好.  相似文献   

16.
In vitro mineralization experiment is an effective way to study the effect of organic matrix on calcium carbonate crystallization, and to reveal the relationship between organic matrix and inorganic crystal in natural biominerals. In natural biominerals, organic matrix plays an important role in crystal formation and stability, together with microenvironment changes, they can affect crystal polymorph, morphology, density, size, orientation etc.In this work, we systematically studied the effects of different organic matrices in fish otoliths, the organic matrix concentration changes, as well as the co-effect of organic matrices with temperature, pH value and Mg ion changes in the in vitro CaCO3 mineralization experiments.The organic matrix and concentration change experiments prove that water soluble matrix (WSM) plays an important role in crystal form transition. It can induce CaCO3 crystals with same crystal polymorph as the otolith from which organic matrix was extracted. The temperature change experiment proves that CaCO3 has a tendency to form calcite, vaterite, and then aragonite in priority as temperature goes up. Under different temperature, WSM from lapillus/asteriscus still has the effect to mediate different CaCO3 crystals. The pH change experiment shows that, near the neutral environment, as pH value goes up, calcites have a tendency to form crystal aggregates with more faces exposed, the organic matrix still keeps crystal mediation effect. The Mg2 + experiment shows that, Mg ion can promote aragonite formation, together with lapillus organic matrix, aragonites with different shapes are formed.  相似文献   

17.
Calcium carbonate (CaCO3) particles with various shapes were prepared by the reaction of sodium carbonate with calcium chloride in the presence of a new functional double-hydrophilic block copolymer poly (acrylic acid)-block-(acrylic hydroxy lactide) (PAAL) at room temperature. The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. The effects of pH, concentration of PAAL and CaCO3 on the crystal form and morphologies of the as-prepared CaCO3 were investigated. The results show that pH, concentration of PAAL and CaCO3 are important parameters for the control of morphologies of CaCO3. Depending on the experimental conditions, various morphologies of CaCO3, such as plate-like aggregates, poly-nucleated spheres, ellipsoids, monodispersed spheres, rhombohedras, etc., can be obtained. Especially, the optimal experimental conditions for the production of monodispersed spherical CaCO3 particles were determined.  相似文献   

18.
We report an interesting finding of calcium carbonate (CaCO3) crystal growth in the silk fibroin (SF) hydrogel with different concentrations by a simple ion diffusion method. The experimental results indicate that the CaCO3 crystals obtained from silk fibroin gels with low and high concentrations are all calcites with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that silk fibroin hydrogel plays an important role in the process of crystallization. The possible formation mechanism of CaCO3 crystals is proposed. This study provides a better explanation of the influence of silk fibroin concentration and its structure on CaCO3 crystals growth.  相似文献   

19.
The silk fibroin/calcium phosphate composites were prepared by adding the different amount of Na2SiO3 to assess the effect of silicon on the HA (hydroxyapatite) formation in the composites. FTIR and XRD results suggested that the inorganic phase was constituted mainly by the amorphous DCPD (dicalcium phosphate dehydrate), a precursor of HA in the bone mineral, when the composites were prepared at the final Na2SiO3 concentration lower than 0.008%. Otherwise, HA was formed as the predominant one in the as-prepared composite, accompanied with a conformational transition in the organic phase of silk fibroin protein from silk I (α-helix and/or polyglycine II (31–helix) conformations) to silk II (antiparallel β-sheet conformation). SEM images showed the different morphologies with the samples, i.e., sheet-like crystals in the composites prepared at a low Na2SiO3 concentration and rod-like bundles in other composites. The rod-like bundles were connected together to form the porous network, due to the fact that the HA crystals grew with the aggregation of silk fibroin, and further accreted onto the silk fibroin fibrils. TG curves indicated that the composites prepared with a certain amount of additional SiO32− had the higher thermal stability because of its high molecular orientation and crystallinity, and high water-holding capacity due to the porous microstructure.  相似文献   

20.
This paper reports on the mechanical properties and pH upon degradation of phosphate glass fibre reinforced methacrylate-modified oligolactide. Phosphate glass fibres of the composition 51.04 P2O5–21.42 CaO–25.51 Na2O–2.03 SiO2 (mol%) were produced by a crucible spinning technique. Fibres were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide; samples with and without addition of CaCO3 for pH control were produced. pH during degradation in physiological NaCl solution could be increased to up to 6.5 by addition of 20 wt.% calcium carbonate to the fibre composites. pH in Tris buffer solution was about 7.11. Mechanical properties of dry specimens were investigated during 3-point bending tests and gave elastic moduli in the range of cortical bone (15 to 20 GPa). However, addition of calcium carbonate decreased tensile strength of the fibre composites and resulted in brittle fracture behaviour, while CaCO3-free composites showed a fibrous fracture mode. Control of pH and degradation is a requirement for obtaining a fracture fixation device with degradation properties matching in vivo requirements. Results show that addition of CaCO3 is suitable for controlling the pH during degradation of metaphosphate glass polymer composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号