首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the design and performance of new type ion source are described. The discharge mechanism of the source is based on creating an arc discharge through a saddle electric field inside the discharge tube. The saddle electric field is created by immersing an annular anode inside the discharge tube covered from the upper and lower ends with two flanges. These two flanges act as cathodes. The discharge tube is surrounded by a solenoid coil which produces an axial magnetic field (up to 400 G) measured at the center of the source. Measurements have been performed to find out the influence of arc power, pressure, discharge voltage, magnetic field, and extracting voltage on the ion source properties. The source yields an argon ion current of approximately 0.6 mA and electron current of approximately 4 mA at normal operating conditions (extraction voltage V(ex)=7 kV, pressure of 5.5x10(-4) Torr, V(arc)=400 V, I(arc)=1 A, B=200 G). It showed an energy spread of 20 eV at a discharge voltage of 400 V and an extraction voltage of 3 kV.  相似文献   

2.
The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (~100 μA) with high charge (~10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.  相似文献   

3.
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (~56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.  相似文献   

4.
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.  相似文献   

5.
Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.  相似文献   

6.
We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.  相似文献   

7.
RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.  相似文献   

8.
FAR-TECH, Inc., has developed a particle-in-cell Monte Carlo code (EBIS-PIC) to model ion motions in an electron beam ion source (EBIS). First, a steady state electron beam is simulated by the PBGUNS code (see http://far-tech.com/pbguns/index.html). Then, the injected primary ions and the ions from the background neutral gas are tracked in the trapping region using Monte Carlo method. Atomic collisions and Coulomb collisions are included in the EBIS-PIC model. The space charge potential is updated by solving the Poisson equation each time step. The preliminary simulation results are presented and compared with BNL electron beam test stand (EBTS) fast trapping experiments.  相似文献   

9.
介绍了一个新型16厘米束径多会切磁场低能强流宽束离子源(MCLB-16)。由于采用新型多会切磁场和优化的低能引出系统,所以该源在薄膜辅助沉积的能量(200eV~800eV)范围内,具有较好的低能特性。源的最大引出束流可达650mA。可用反应气体或惰性气体工作。源在使用氧气时,可连续工作数十小时。该源可用于各种高性能薄膜制备的辅助沉积,也可用于制备大面积类金钢石膜(DLC)。叙述了该源的结构及性能。  相似文献   

10.
A mechanism of ion extraction from a glow-discharge ion source based on a hollow cathode and used for elemental analysis of solids, is considered Experiments have shown that two oppositely directed ion flows are formed from ions produced in the region of negative glow-discharge fluorescence. One flow has an ion energy ≥ 100 eV, is directed to the cathode, and bombards and sputters the analyzed sample. The sputtered atoms diffuse into the negative-glow region and are ionized. The second flow (low-energy ions) is extracted from the same negative-glow region and transported from the cathode to the surface of the anode chamber owing to an ambipolar diffusion. These ions are extracted from a hole in the anode chamber of a standard ion source by an electric field and are used for mass-spectrum analysis. The energy-distribution width for these ions is ∼5 eV. The intensity of the ion beam extracted from the anode hole is an order of magnitude higher than the intensity of the ion beam extracted from the cathode region. Original Russian Text ? G.G. Sikharulidze, 2009, published in Pribory i Tekhnika Eksperimenta, 2009, No. 2, pp. 105–109.  相似文献   

11.
A tungsten filament cathode has been operated with an ac heating current to excite a plasma in a linear magnetic field. Both the discharge current and the ion saturation current in plasma near the extraction hole of the ion source exhibited fluctuations. The discharge current fluctuated with the amplitude less than 2% of the average, and the frequency two times the frequency of the heating current. Fluctuation amplitude of the ion saturation current was about 10% of the average, while the frequency was the same as that of the heating current. The ac operation has prolonged the lifetime of a hot filament cathode by about 50%.  相似文献   

12.
An ion source based on a two-stage discharge with electron injection from a cold emitter is presented. The first stage is the emitter itself, and the second stage provides acceleration of injected electrons for gas ionization and formation of ion flow (<20 eV, 5 A dc). The ion accelerating system is gridless; acceleration is accomplished by an electric field in the discharge plasma within an axially symmetric, diverging, magnetic field. The hollow cathode electron emitter utilizes an arc discharge with cathode spots hidden inside the cathode cavity. Selection of the appropriate emitter material provides a very low erosion rate and long lifetime.  相似文献   

13.
A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.  相似文献   

14.
介绍一个适用于光学镀膜用的直径为120mm的大束密均匀区离子源的结构设计及性能参数,并对影响束密均匀性的因素进行了讨论.  相似文献   

15.
介绍一个适用于光学镀膜用的直径为120mm的大束密均匀区离子源的结构设计及性能参数,并对影响束密均匀性的因素进行了讨论.  相似文献   

16.
介绍一个适用于光学镀膜用的直径为1 2 0 mm的大束密均匀区离子源的结构设计及性能参数 ,并对影响束密均匀性的因素进行了讨论  相似文献   

17.
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.  相似文献   

18.
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2).  相似文献   

19.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.  相似文献   

20.
The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号