首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold nanoparticles were synthesized and inkjet-printed on a paper substrate and IR-sintered to produce conductive electrodes. The electrodes were further functionalised by using self-assembled octadecanethiol monolayers (SAMs). The effect of sintering, print quality, and SAM formation were examined by topographical, chemical and electrical methods. With optimised printing parameters, a volume resistivity of ~1.6 × 10(-7) Ω m was attained by a single print layer.  相似文献   

2.
A new approach to rapidly produce micrometer-scale sensor elements into reusable multianalyte chemical sensor arrays is demonstrated. By using pin printing technology in concert with sol-gel processing methods, we form discrete xerogel-based microsensors on a planar substrate. We illustrate the new approach by forming discrete 02- and pH-responsive sensing elements into arrays that allow one to simultaneously determine O2 and pH in aqueous samples. The pin printing method allows one to prepare sensor elements that are on the order of 100 microm in diameter, 1-2 microm thick, at a rate of approximately one sensor element per second with a single pin. Within a given calibrated array, the sensor element-to-sensor element response is reproducible to within 5%, the sensor element short- and long-term reproducibilities are 3 and 6%, respectively, and the array-to-array response reproducibility is 11%. These results demonstrate the potential of this methodology for rapidly forming ensembles of reusable sensor arrays for simultaneous multianalyte detection.  相似文献   

3.
Examined the behavior of a chaotic circuit where one of the components has been replaced by a chemical sensor. The response of the sensor is manifested as a change in the attractor of the circuit. Furthermore, with a proper operating point, a small response of the sensor causes a change in the attractor of the circuit within a time much shorter than the normally defined response time of the sensor. This technique unites sensors and data processing as one combined unit in a unique fashion.  相似文献   

4.
Inkjet-printed InGaZnO thin film transistor   总被引:2,自引:0,他引:2  
Gun Hee Kim 《Thin solid films》2009,517(14):4007-1340
We report inkjet-printed InGaZnO (IGZO) thin film transistors (TFTs). IGZO ink was prepared by dissolving indium nitrate hydrate, gallium nitrate hydrate and zinc acetate dihydrate into 2-methoxyethanol with additional stabilizers. The resulting films were inkjet-printed with a resolution of 300 dots per inch using droplets with a diameter of 40 µm, and a volume of 35 pl. The films exhibited high optical transparency in the visible range and had a polycrystalline phase of InGaO3(ZnO)2 after thermal annealing treatment. The chemical composition of this IGZO sample was also determined, and shown to have high stoichiometric characteristics of low oxygen deficiency. The TFTs with a conventional inverted staggered structure using inkjet-printed IGZO as an active channel layer had a field-effect mobility of ~ 0.03 cm2/Vs in saturation region and an on-to-off current ratio greater than ~ 104.  相似文献   

5.
Many types of sensors have been developed to detect chemical species in the gas phase. These include optical based on color change or fluoresence, surface acoustic wave (SAW) devices, electrochemical, chemoresistive/semiconductive, field effect transistors (FET), metal-insulator-semiconductor (MIS) diode devices, and many other. Among these, resistive type sensors based on ceramic oxides are particularly attractive because of their low cost, wide range of applications and potential for use in electronic nose. This article focuses mainly on the resistive/semiconductive, especially the surface conductive ceramic oxide type gas sensors. The main emphasis is on the basic principles involving gas-solid reactions. Also discussed are selected applications with an emphasis on sensor design issues. Since SnO2 can be used as a model system for oxide-based sensors, most of the discussions focuses on this system, though other systems are occasionally highlighted illustrating recent developments.  相似文献   

6.
We demonstrate lensfree on-chip sensing within a microfluidic channel using plasmonic nanoapertures that are illuminated by a partially coherent quasimonochromatic source. In this approach, lensfree diffraction patterns of metallic nanoapertures located at the bottom of a microfluidic channel are recorded using an optoelectronic sensor-array. These lensfree diffraction patterns can then be rapidly processed, using phase recovery techniques, to back propagate the optical fields to an arbitrary depth, creating digitally focused complex transmission patterns. Cross correlation of these patterns enables lensfree on-chip sensing of the local refractive index surrounding the near-field of the plasmonic nanoapertures. Based on this principle, we experimentally demonstrate lensfree sensing of refractive index changes as small as ~2×10(-3). This on-chip sensing approach could be quite useful for development of label-free microarray technologies by multiplexing thousands of plasmonic structures on the same microfluidic chip, which can significantly increase the throughput of sensing.  相似文献   

7.
8.
We show that coupled electrorotation (CER) of microscopic particles using microfabricated electrodes can be used for localized sensing and mixing. The effective use of microelectromechanical systems and micro total analysis systems requires many types of control. These include the abilityto (1) manipulate objects within microchannels by noncontact means, (2) mix fluids, and (3) sense local chemical parameters. Coupled electrorotation, in which the interactions between induced electric dipoles of adjacent particles lead to particle rotation, addresses aspects of all three challenges simultaneously. CER is a simple means of controlling the rotation of dielectric objects using homogeneous external radio frequency electric fields. CER is sensitive to several chemical and physical parameters such as the solution conductivity, pH, and viscosity. As a step toward integrating CER devices into microfluidic systems, a simple chip was designed to induce local mixing and to detect local changes in salt concentration, pH, and viscosity.  相似文献   

9.
Supramolecular chemistry can be utilized for chemical sensor technology with compounds like cyclodextrins, paracyclophanes and calixarenes that are capable to form host–guest complexes. Optimizations of the structures by changing the diameter and the height of the cavity or converting the polarity into hydrophobic ones allow to tune the sensitivity of these materials towards different analytes. Further improvements of sensor coating were available with the development of molecular imprinting techniques that generate rigid and sensitive layers directly on the transducer of interest. This enables the detection of polycyclic aromatic hydrocarbons (PAHs) in the liquid phase down to a concentration of 30 ng/l.  相似文献   

10.
Staii C  Johnson AT  Chen M  Gelperin A 《Nano letters》2005,5(9):1774-1778
We demonstrate a new, versatile class of nanoscale chemical sensors based on single-stranded DNA (ss-DNA) as the chemical recognition site and single-walled carbon nanotube field effect transistors (swCN-FETs) as the electronic read-out component. swCN-FETs with a nanoscale coating of ss-DNA respond to gas odors that do not cause a detectable conductivity change in bare devices. Responses of ss-DNA/swCN-FETs differ in sign and magnitude for different gases and can be tuned by choosing the base sequence of the ss-DNA. ss-DNA/swCN-FET sensors detect a variety of odors, with rapid response and recovery times on the scale of seconds. The sensor surface is self-regenerating: samples maintain a constant response with no need for sensor refreshing through at least 50 gas exposure cycles. This remarkable set of attributes makes sensors based on ss-DNA decorated nanotubes very promising for "electronic nose" and "electronic tongue" applications ranging from homeland security to disease diagnosis.  相似文献   

11.
12.
This research focuses on exploring low-cost and rapid production solutions for fabricating emitters for patch antennas for wireless communication applications. Additive manufacturing technique is employed to fabricate two patch antennas using silver nanoparticle ink on FR4 substrate. Finite-element simulation software, HFSS is used to analyse and predict the theoretical performance of the antenna designs for 2.4?GHz MIMO and 6?GHz wireless data transmission. The fabricated antennas have resonant frequencies closely matching the design values. The work provides a viable solution for fabricating emitters and finally antennas commercially using inkjet printing platform, thus overall reducing the cost and simplifying the process.  相似文献   

13.
An integrated system was developed that performs microfluidic transport, mixing, and sensing on a single chip. The operation principle for the microfluidic transport was based on electrowetting. A solution to be transported was confined in a space between a row of gold working electrodes and a protruding poly(dimethylsiloxane) (PDMS) structure. When a negative potential was applied to one of the gold working electrodes, it became hydrophilic, and the solution was transported through the flow channel. The solution could be transported in any desired direction in a network of flow channels by switching on necessary electrodes one by one. Furthermore, two solutions transported through two flow channels could be mixed using a mixing electrode based on the same principle. To demonstrate the applicability of a lab-on-a-chip, an air gap ammonia electrode was integrated by taking advantage of the open structure of the flow channel. Gaseous ammonia that was produced after pH adjustment and diffused through an air gap caused a pH change in the electrolyte layer, which was measured with an iridium oxide pH indicator electrode. The 90% response time was less than 1 min for the millimolar order of ammonia. The calibration curve was linear down to 10 microM. The ammonia-sensing system was also applied to construct biosensing systems for urea and creatinine. A linear relationship was observed between the potential and the logarithm of the concentration of the analytes down to 50 microM for both urea and creatinine. The developed microfluidic system can be a basic building block for future systems.  相似文献   

14.
Ang PK  Li A  Jaiswal M  Wang Y  Hou HW  Thong JT  Lim CT  Loh KP 《Nano letters》2011,11(12):5240-5246
The electronic properties of graphene are strongly influenced by electrostatic forces arising from long-range charge scatterers and by changes in the local dielectric environment. This makes graphene extremely sensitive to the surface charge density of cells interfacing with it. Here, we developed a graphene transistor array integrated with microfluidic flow cytometry for the "flow-catch-release" sensing of malaria-infected red blood cells at the single-cell level. Malaria-infected red blood cells induce highly sensitive capacitively coupled changes in the conductivity of graphene. Together with the characteristic conductance dwell times, specific microscopic information about the disease state can be obtained.  相似文献   

15.
Microfluidic systems provide a total solution of biological and chemical analysis from the sample application to the display of the analysis results. A lot of developments on the point-of-care diagnostic applications have been reported and the commercial possibility is shown. To achieve sensitive and specific biological sensing, nanoparticles may provide a promising tool because they have similar length scale with the biomolecules. The nano-sensing technology suggests a molecular level detection of the biomolecules to pursue higher performance. In this review, recent developments and patents on the biological sensing using nanoparticles in microfluidic systems are discussed. An updated, systematic and rapid reference in the field of nano-biological sensing is provided.  相似文献   

16.
The first (to our knowledge) III-V mid-IR vertical-cavity surface-emitting lasers (lambda = 2.9 mum) are demonstrated and show promising characteristics for chemical detection applications. The cw optical-pumping threshold is low (4 mW at 80 K) and efficiency is high (5.6% W/W). Pulsed operation is obtained up to 280 K and cw up to 160 K. Lateral-mode confinement will lead to spectrally pure, single-mode output for chemical identification.  相似文献   

17.
Fiber-optic chemical sensing has been demonstrated with a side-polished single-mode optical fiber, evanescently coupled to chemically sensitive Langmuir-Blodgett (LB) overlay waveguides. The sensors exhibit a channel-dropping response centered on a wavelength that is dependent on the thickness and the refractive index of the overlay waveguide. It has been shown that pH-sensitive organic dyes proved to be suitable materials for the formation of an overlay waveguide whereas LB deposition provides the required thickness control. A theoretical model of the sensor response, based on the Kramers-Kronig relations and phase matching of the guided modes within the optical fiber and overlay waveguide, shows good agreement with experimental results.  相似文献   

18.
It was recently shown that naturally occurring, genetically engineered or chemically modified channels can be used to detect analytes in solution. We demonstrate here that the overall range of analytes that can be detected by single nanometer-scale pores is expanded using a potentially simpler system. Instead of attaching recognition elements to a channel, they are covalently linked to polymers that otherwise thread through a nanometer-scale pore. Because the rate of unbound polymer entering the pore is proportional to its concentration in the bulk, the binding of analyte to the polymer alters the latter's ability to thread through the pore, and the signal that results from individual polymer translocation is unique to the polymer type; the method permits multianalyte detection and quantitation. We demonstrate here that two different proteins can be simultaneously detected with this technique.  相似文献   

19.
Electrochemical multianalyte immunoassays using an array-based sensor   总被引:1,自引:0,他引:1  
Wilson MS  Nie W 《Analytical chemistry》2006,78(8):2507-2513
A novel amperometric biosensor for performing simultaneous electrochemical multianalyte immunoassays is described. The sensor consisted of eight iridium oxide sensing electrodes (0.78 mm(2) each), an iridium counter electrode, and a Ag/AgCl reference electrode patterned on a glass substrate. Four different capture antibodies were immobilized on the sensing electrodes via adsorption. Quantification of proteins was achieved using an ELISA in which the electrochemical oxidation of enzyme-generated hydroquinone was measured. The spatial separation of the electrodes enabled simultaneous electrochemical immunoassays for multiple proteins to be conducted in a single assay without amperometric cross-talk between the electrodes. The simultaneous detection of goat IgG, mouse IgG, human IgG, and chicken IgY was demonstrated. The detection limit was 3 ng/mL for all analytes. The sensor had excellent precision (1.9-8.2% interassay CV) and was comparable in performance to commercial single-analyte ELISAs. We anticipate that chip-based sensors, as described herein, will be suitable for the mass production of economical, miniaturized, multianalyte assay devices.  相似文献   

20.
Organic thin-film transistors for chemical and biological sensing   总被引:1,自引:0,他引:1  
Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号