首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic solar cells were fabricated with two new imidazolin-5-one molecules as active layers. The use of imidazolin-5-ones, derivatives of a biomolecule chromophore, for photovoltaic applications is particularly attractive due to its biodegradable nature and tunable properties. Single-layer devices with two analogues of imidazolin-5-ones were prepared and characterized. Devices fabricated with one of the molecules as the active layer showed a maximum Jsc of 0.52 μA cm−2 and Voc of 0.68 V at an incident power of 20.32 mW cm−2, while the other set of devices showed a maximum Jsc of 0.63 μA cm−2 and Voc of 0.57 V at the same incident power.  相似文献   

2.
We have investigated the influence of electrolyte composition on the photovoltaic performance of a dye-sensitized nanocrystalline TiO2 solar cell (DSSC) based on a Ru(II) terpyridyl complex photosensitizer (the black dye). We have also spectroscopically investigated the interaction between the electrolyte components and the adsorbed dye. The absorption peaks attributed to the metal-to-ligand charge transfer transitions of the black dye in solution and adsorbed on a TiO2 film, were red-shifted in the presence of Li cations, which led to an expansion of the spectral response of the solar cell toward the near-IR region. The photovoltaic performance of the DSSC based on the black dye depended remarkably on the electrolyte composition. We developed a novel efficient organic liquid electrolyte containing an imidazolium iodide such as 1,2-dimethyl-3-n-propylimidazolium iodide or 1-ethyl-3-methylimidazolium iodide (EMImI) for a DSSC based on the black dye. A high solar energy-to-electricity conversion efficiency of 9.2% (Jsc=19.0 mA cm−2, Voc=0.67 V, and FF=0.72) was attained under AM 1.5 irradiation (100 mW cm−2) using a novel electrolyte consisting of 1.5 M EMImI, 0.05 M iodine, and acetonitrile as a solvent with an antireflection film.  相似文献   

3.
For the first time, the application of a molten salt, triethylamine hydroiodide (THI), as a supporting electrolyte was investigated for the dye-sensitized solar cells (DSSCs). Titanium dioxide (TiO2) electrode was modified by incorporation of high- and low-molecular weight poly(ethylene glycol) along with TiO2 nanoparticles of two different sizes (300 nm (30 wt%) and 20 nm (70 wt%)). The highest apparent diffusion coefficient (D) of 8.12×10−6 cm2 s−1 was obtained for I (0.5 M of THI) from linear sweep voltammetry (LSV). Short-circuit current density (Jsc) increases with the concentration of THI whereas open-circuit potential (Voc) remains the same. Optimum Jsc (19.28 mA cm−2) and Voc (0.7 V) with a highest conversion efficiency (η) of 8.45% were obtained for the DSSC containing 0.5 M of THI/0.05 M I2/0.5 M TBP in CH3CN. It is also observed that the Jsc and η of the DSSC mainly relates with the D values of I and charge-transfer resistances such as Rct1 and Rct2 operating along Pt/TiO2 electrolyte interface, obtained from LSV and electrochemical impedance spectroscopy (EIS). For comparison, tetraethylammonium iodide (TEAI) and LiI were also selected as supporting electrolytes. Though both the THI and TEAI have similar structures, replacement of one methyl group by hydrogen improves the efficiency of the DSSC containing the former electrolyte. Further, the DSSC containing THI exhibits higher Jsc and η than LiI (7.70%), from which it is concluded that THI may be used as an efficient and alternative candidate to replace LiI in the current research of DSSCs.  相似文献   

4.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

5.
The effect of the iodide/triiodide redox electrolyte in various organic solvents on the photoelectrochemical properties of bis(tetrabutylammonium) cis-bis(thiocyanato)bis(4-carboxy-2,2′-bipyridine-4′-carboxylato)ruthenium(II)-sensitized nanocrystalline TiO2 solar cells was studied. Solvents with large donor numbers dramatically enhanced the open-circuit voltage (Voc), but usually reduced the short-circuit photocurrent density (Jsc). For a mixed solvent of tetrahydrofuran (THF) and acetonitrile, Voc increased and the fill factor decreased with increasing THF concentration, but Jsc remained relatively constant. As the partial charge of the N or O atom of the solvent molecule increased, Voc increased, but Jsc was unchanged up to a certain value of the partial charge (for THF, −0.46). For cells using 0.3 M 4-tert-butylpyridine and 20 vol% THF in the electrolyte, a short-circuit photocurrent density of 18.23 mA cm−2, an open-circuit voltage of 0.73 V, a fill factor of 0.73, and an overall conversion efficiency of 9.74% were obtained.  相似文献   

6.
A possibility of semiconductor-sensitized thin film solar cells have been proposed. Nanocrystalline In2S3-modified In2O3 electrodes were prepared with sulfidation of In2O3 thin film electrodes under H2S atmosphere. The band gap (Eg) of In2S3 estimated from the onset of the absorption spectrum was approximately 2.0 eV. The photovoltaic properties of a photoelectrochemical solar cell based on In2S3/In2O3 thin film electrodes and I/I3 redox electrolytes were investigated. This photoelectrochemical cell could convert visible light of 400–700 nm to electron. A highly efficient incident photon-to-electron conversion efficiency (IPCE) of 33% was obtained at 410 nm. The solar energy conversion efficiency, η, under AM 1.5 (100 mW cm−2) was 0.31% with a short-circuit photocurrent density (Jsc) of 3.10 mA cm−2, a open-circuit photovoltage (Voc) of 0.26 V, and a fill factor ( ff ) of 0.38.  相似文献   

7.
Network hybrid gel prepared with tetraethyl orthosilicate, 3-aminopropyltrimethoxysilane (APS) and poly(ethylene glycol) was used as an electrolyte matrix in a quasi-solid state dye-sensitized solar cell (DSSC). Change in pH of this hybrid gel by varying the composition of APS was found to have remarkable effects on the photoelectrochemical performance of the cell. The hybrid gel matrix, having silane polymer backbones with free amine functionality, was characterized by FT-IR spectra and FE-SEM images, and the assembled DSSC by photocurrent-voltage and incident photon to current conversion efficiency curves. The unsealed, quasi-solid state DSSC with the hybrid gel has shown an increase in the open-circuit voltage (Voc) and a steady decrease in the short-circuit photocurrent (Jsc), with increase in the content of APS. A maximum conversion efficiency of 4.5% was obtained for a DSSC by using 20% of APS in its hybrid gel at a light intensity of 100 mW cm−2. Upon replacing the amino group of APS by bulkier aniline and benzophenoaniline groups, conversion efficiencies of the corresponding DSSCs were reduced. Variations in the Voc and Jsc are explained in terms of shift of the flat band potential of TiO2 and a complex formation between I3 and −NH2 of APS of the electrolyte.  相似文献   

8.
The influence of alkylpyridines additive to an I/I3 redox electrolyte in acetonitrile on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell was studied. IV measurements were performed using more than 30 different alkylpyridines. The alkylpyridine additives showed a significant influence on the performance of the cell. All the additives decreased the short-circuit photocurrent (Jsc), but most of the alkylpyridines increased the open-circuit photovoltage (Voc) and fill factor (ff) of the solar cell. The results of the molecular orbital calculations suggest that the dipole moment of the alkylpyridine molecules correlate with the Jsc of the cell. These results also suggest that both the size and ionization energy of pyridines correlate with the Voc of the cell. Under AM 1.5 (100 mW/cm2), the highest solar energy conversion efficiency (η) of 7.6% was achieved by using 2-propylpyridine as an additive, which was more effective than the previously reported additive, 4-t-butylpyridine.  相似文献   

9.
Quasi-dye-sensitized solar cells were prepared by using ionic liquid-type electrolytes and gelators consisting of polyvinylpyridine and alkyl dihalides. Gelation occurred by the reaction of polyvinylpyridine and alkyl dihalides. When the chain length of the dihalides was varied, the short-circuit current (Jsc) increased with an increase in the chain length. However, the open-circuit voltage (Voc) and fill factor (ff) slightly decreased. The increase in Jsc was brought about by the decrease in the interfacial resistances between the gel electrolyte and the counter electrode. In addition, the increase in the Jsc was explained by increases in the apparent diffusion coefficient of I/I3 when the chain length increased. Decreases in Voc and ff were explained by back-electron transfers from TiO2 to iodine in the electrolytes. Voc of the cells solidified by alkyldiiodide was lower than that solidified by alkyldichloride or alkyldibromide. It was explained by negatively shifted redox potential of I/I3, compared with those for Cl/Cl2 or Br/Br2.  相似文献   

10.
The influence of pyrazole additives in an I/I3 redox electrolyte solution on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics of the cell were measured using 18 different pyrazole derivatives. All of the pyrazole additives enhanced the open-circuit photovoltage (Voc) and the solar energy conversion efficiency (η), but reduced the short-circuit photocurrent density (Jsc). Most of the pyrazoles improved fill factor (ff). The physical and chemical properties of the pyrazoles were computationally calculated in order to elucidate the reasons for the additive effects on cell performance. The greater the partial charge of the nitrogen atom at position 2 in the pyrazole group, the larger the Voc, but the smaller the Jsc values. As the dipole moment of the pyrazole derivatives increased, the Voc value increased, but the Jsc value decreased. The Voc of the cell also increased as the ionization energy of the pyrazoles decreased. These results suggest that the electron donicity of the pyrazole additives affected the interaction with the nanocrystalline TiO2 photoelectrode, the I/I3 electrolyte, and the acetonitrile solvent, which changed the Ru(II)-dye-sensitized solar cell performance.  相似文献   

11.
The influence of alkylaminopyridine additives on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell with an I/I3 redox electrolyte in acetonitrile was studied. The current–voltage characteristics were measured for more than 20 different alkylaminopyridines under AM 1.5 (100 mW/cm2). The alkylaminopyridine additives tested had varying effects on the performance of the cell. All the additives decreased the short circuit photocurrent density (Jsc), but increased the open-circuit photovoltage (Voc) of the solar cell. Molecular orbital calculations imply that the dipole moment of the alkylaminopyridine molecules influences the Jsc of the cell and that the size, solvent accessible surface area, and ionization energy all affect the Voc of the cell. The highest Voc of 0.88 V was observed in an electrolyte containing 4-pyrrolidinopyridine, which is comparable to the maximum Voc of 0.9 V for a cell consisting of TiO2 electrode and I/I3 redox system.  相似文献   

12.
We have studied the influence of electrolytes on the photovoltaic performance of mercurochrome-sensitized nanocrystalline TiO2 solar cells using LiI, LiBr, and tetraalkylammonium iodides as the electrolyte. Short-circuit photocurrent density (Jsc) and open-circuit photovoltage (Voc) depended strongly on the electrolyte. Jsc of 3.42 mA cm−2 and Voc of 0.52 V were obtained for the LiI electrolyte and Jsc of 2.10 mA cm−2 and Voc of 0.86 V were obtained for the Pr4NI electrolyte. This difference in photovoltaic performance was due to the change in the conduction band level of the TiO2 electrode. Large Voc of 0.99 V was obtained for the LiBr electrolyte due to the large energy gap between the conduction band level of TiO2 and the Br/Br2 redox potential. Solar cell performance also depended strongly on organic solvent, suggesting that the physical properties of solvents such as Li ion conductivity and donor number affect photovoltaic performance.  相似文献   

13.
We report on boron-doped μc-Si:H films prepared by hot-wire chemical vapor deposition (HWCVD) using silane as a source gas and trimethylboron (TMB) as a dopant gas and their incorporation into all-HW amorphous silicon solar cells. The dark conductivity of these films was in the range of 1–10 (Ω cm)−1. The open circuit voltage Voc of the solar cells was found to decrease from 840 mV at low hydrogen dilution H-dil=91% to 770 mV at high H-dil =97% during p-layer deposition which can be attributed to the increased crystallinity at higher H-dil and to subsequent band edge discontinuity between μc-Si:H p- and amorphous i-layer. The short circuit current density Jsc and the fill factor FF show an optimum at an intermediate H-dil and decrease for the highest H-dil. To improve the conversion efficiency and the reproducibility of the solar cells, an amorphous-like seed layer was incorporated between TCO and the bulk p-layer. The results obtained until now for amorphous solar cells with and without the seed layer are presented. The I–V parameters for the best p–i–n solar cell obtained so far are Jsc=13.95 mA/cm2, Voc=834 mV, FF=65% and η=7.6%, where the p-layers were prepared with 2% TMB. High open circuit voltages up to 847 mV could be achieved at higher TMB concentrations.  相似文献   

14.
Photovoltaic devices were assembled using a conducting polymer; poly (3-thiophenemalonic acid) sensitized TiO2 electrodes and an electrolyte containing I3/I redox couple. This cell exhibited a short-circuit photocurrent (Jsc) of 6.65 mA cm−2, an open circuit voltage (Voc) of 355 mV and an efficiency of 1.5% under the illumination of 100 mW cm−2 (AM 1.5). Addition of an ionic liquid, 1-methyl 3-n-hexylimidazolium iodide, into the electrolyte led to an improvement in the cell performances, achieving an overall efficiency of 1.8% under the same illumination. The average cell characteristics of the later devices are , with a fill factor of 0.65.  相似文献   

15.
a-SiOx films have been prepared using silane and pure oxygen as reactive gases in plasma CVD system. Diborane was introduced as a doping gas to obtain p-type conduction silicon oxide. Infrared absorption spectra show the incorporation of Si–O stretch mode around 1000 cm−1. The optical bandgap increases with the oxygen to silane gas ratio, while the electrical conductivity decreases. Hydrogenated amorphous silicon solar cells have been fabricated using p-type a-SiOx with around 1.85 eV optical bandgap and conductivity greater than 10−7 S/cm. The measured current–voltage characteristics of the solar cells under 100 mW/cm2 artificial light are Voc=0.84 V, Jsc=14.7 mA/cm2, FF=0.635 with a conversion efficiency of 7.84%.  相似文献   

16.
The influence of aminothiazole additives in acetonitrile solution of an I/I3 redox electrolyte on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′- bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics were investigated under AM 1.5 (100 mW/cm2) for nine different aminothiazole compounds. The aminothiazole additives tested had varying influences on the solar cell performance. Most of the additives enhanced the open-circuit photovoltage (Voc), but reduced the short circuit photocurrent density (Jsc) of the solar cell. Both the physical and chemical properties of the aminothiazoles were computationally calculated in order to determine the reasons that the additive influenced solar cell performance. The larger the calculated partial charge of the nitrogen atom in the thiazole, the higher the Voc value. The Voc value increased as the dipole moment of aminothiazoles in acetonitrile increased. Moreover, the Voc of the solar cell also increased as the size of the aminothiazole molecules decreased. These results suggest that the electron donicity of the aminothiazole additives influenced the interaction with the TiO2 photoelectrode, which altered the dye-sensitized solar cell performance.  相似文献   

17.
As one of the methods for improving the efficiency of a dye-sensitized solar cell (DSC), we investigated series-connected tandem DSCs. In this system, the top cell is made up of a transparent cell and the bottom cell utilizes only the light passing through the top cell. We investigated several combinations of dyes in tandem-type DSCs. The best efficiency obtained in our study is 10.4% (Jsc=10.8 mA/cm2, Voc=1.45 V, and FF=0.67) for a series-connected tandem DSC consisting of an N719 top cell and a black-dye bottom cell.  相似文献   

18.
Novel iminocoumarin dyes (2a-c and 3a-c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a-c) showed better efficiency when compared to the dyes having carboxyl group (3a-c) alone. The cell consisted of dye 2a generated the highest solar-to-electricity conversion efficiency (η) of 0.767% (open circuit voltage (Voc) = 0.491 V, short circuit photocurrent density (Jsc) = 2.461 mA cm−2, fill factor (ff) = 0.635) under simulated AM 1.5 irradiation (1000 W m−2) with a total semiconductor area of 0.25 cm2. The corresponding incident photon-to-current conversion efficiency (IPCE) of the above cell was 21.38%. The overall low efficiency of the dyes is ascribed to the lack of light harvesting ability at longer wavelength region.  相似文献   

19.
CuInSe2/CdS thin-film heterojunction solar cells were fabricated entirely by chemical bath deposition technique. The illuminated JV characteristics of the devices prepared with different thicknesses of CdS and CuInSe2 were studied. The typical solar cell parameters obtained for the best cell are: Voc = 365 mV, Jsc = 12 mA/cm2, FF = 61%, and η = 3.1% under an illumination of 85 mW/cm2 on a cell of active area 0.1 cm2. The JV and CV characteristics under dark condition and the spectral response were also studied for the best cell. The diode quality factor obtained is 1.7.  相似文献   

20.
The transparent electric windows based on dye-sensitized nanocrystalline TiO2 solar cells have been prepared. The solar cell consists of dye-sensitized TiO2 electrode with a TiO2 layer of an about 8 μm thickness and of a 80×80 mm2 active area, Pt counter electrode and redox electrolyte. The solar cell shows a transmittance of approximately 60% in the visible range and an open-circuit voltage (Voc) of 0.64 V and a short-circuit photocurrent (Jsc) of 250 mA. A moderately transparent electric window composed of nine unit solar cells in series generates Voc of 5.7 V and Jsc of 220 mA at one sun light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号